The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric a...The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric acid tests and double-loop electrochemical potentiokinetic reactivation(DL-EPR) tests. The results show that the partial replacement of C by N first reduces and then increases the size and content of precipitates in high nitrogen MSSs, and converts the dominant precipitates from M23C6 to M2N,furthermore first improves and then deteriorates the IGC resistance. The high nitrogen MSS containing medium C and N contents provides good combination of mechanical properties and IGC resistance.展开更多
The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted z...The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted zone of different heat-treated samples were investigated by X-ray diffraction, electron probe microanalyzer analysis, and trans- mission electron microscopy. The corrosion resistance was evaluated using electrochemical measurements, and the analysis of passive film was carded out by X-ray photoelectron spectroscopy. The results indicated that the volume fraction of precipitates decreased, and the homogeneity of elements was improved with increasing austenitizing temperature. The degree of Cr-depleted zone around coarse M23C6 was severer than that around M2N, and pitting corrosion initiated preferentially around M23C6. The corrosion resistance of the samples increased with the austenitizing temperature. With the increase in austenitizing temperature, the passive film was thickened and Cr(III)cr2O3 in the inner layer of passive film was enriched, which enhanced the corrosion resistance of the steel. The higher content of nitrogen in solid solution at higher austenitizing temperature contributed to the increased intensity of CrN and NH3, leading to the increase in pH value in the pit, and promoting the repassivation of 55Cr18Mo1N steel.展开更多
High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to...High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to 0.86 wt.%) on the pitting corrosion behavior of the experimental non-magnetic drill collar steel were investigated using the electrochemical tests and immersion tests. Besides, X-ray photoelectron spectroscopy was used to analyze the constitution of the passive film. The results show that with the enhancement of N content from 0.63 to 0.86 wt.%, the metastable pitting corrosion sensitivity of the tested materials in 3.5 wt.% NaCl solution decreased and the pitting corrosion resistance increased. Meanwhile, the corrosion rate in 6 wt.% FeCl3 solution at 30 ℃ decreased from 10.40 to 4.93 mm/a. On the other hand, nitrogen was concentrated in the form of ammonia (NH4+ and NH3)on the outermost surface of the passive films. The contents of Cr2O3 and Fe2O3 raised in the passive films, together with the content of CrN, at metal/film interface increased as N content increased from 0.63 to 0.86 wt.%, which facilitated protective ability of the passive films, thus contributing to higher pitting corrosion resistance.展开更多
基金supported by the National Natural Science Foundation of China [grant numbers 51434004, U1435205, 51774074]Fundamental Research Funds for the Central Universities [N172512033, N172507002]Transformation Project of Major Scientific and Technological Achievements in Shenyang [grant number Z17-5-003]
文摘The microstructure evolution and intergranular corrosion(IGC) behavior of high nitrogen martensitic stainless steels(MSSs) by partial replacing C by N were investigated by using microscopy, X-ray diffraction, nitric acid tests and double-loop electrochemical potentiokinetic reactivation(DL-EPR) tests. The results show that the partial replacement of C by N first reduces and then increases the size and content of precipitates in high nitrogen MSSs, and converts the dominant precipitates from M23C6 to M2N,furthermore first improves and then deteriorates the IGC resistance. The high nitrogen MSS containing medium C and N contents provides good combination of mechanical properties and IGC resistance.
基金financially supported by National Natural Science Foundation of China (Grant Nos.51304041, 51434004 and U1435205)Fundamental Research Funds for the Central Universities (Grant No. N150204007)
文摘The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted zone of different heat-treated samples were investigated by X-ray diffraction, electron probe microanalyzer analysis, and trans- mission electron microscopy. The corrosion resistance was evaluated using electrochemical measurements, and the analysis of passive film was carded out by X-ray photoelectron spectroscopy. The results indicated that the volume fraction of precipitates decreased, and the homogeneity of elements was improved with increasing austenitizing temperature. The degree of Cr-depleted zone around coarse M23C6 was severer than that around M2N, and pitting corrosion initiated preferentially around M23C6. The corrosion resistance of the samples increased with the austenitizing temperature. With the increase in austenitizing temperature, the passive film was thickened and Cr(III)cr2O3 in the inner layer of passive film was enriched, which enhanced the corrosion resistance of the steel. The higher content of nitrogen in solid solution at higher austenitizing temperature contributed to the increased intensity of CrN and NH3, leading to the increase in pH value in the pit, and promoting the repassivation of 55Cr18Mo1N steel.
基金the National Nat-ural Science Foundation of China(Grant Nos.U1960203,51774074 and 51434004)Shanxi Municipal Major Science and Technology Project(Grant No.20181101014)+2 种基金Fundamental Research Funds for the Central Universities(Grant Nos.N172512033 and N2024005-4)Talent Project of Revitalizing Liaoning(XLYC1902046)State Key Laboratory of Metal Material for Marine Equipment and Application(Grant No.HG-SKL(2019)13).
文摘High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to 0.86 wt.%) on the pitting corrosion behavior of the experimental non-magnetic drill collar steel were investigated using the electrochemical tests and immersion tests. Besides, X-ray photoelectron spectroscopy was used to analyze the constitution of the passive film. The results show that with the enhancement of N content from 0.63 to 0.86 wt.%, the metastable pitting corrosion sensitivity of the tested materials in 3.5 wt.% NaCl solution decreased and the pitting corrosion resistance increased. Meanwhile, the corrosion rate in 6 wt.% FeCl3 solution at 30 ℃ decreased from 10.40 to 4.93 mm/a. On the other hand, nitrogen was concentrated in the form of ammonia (NH4+ and NH3)on the outermost surface of the passive films. The contents of Cr2O3 and Fe2O3 raised in the passive films, together with the content of CrN, at metal/film interface increased as N content increased from 0.63 to 0.86 wt.%, which facilitated protective ability of the passive films, thus contributing to higher pitting corrosion resistance.