The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei...The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei.The development of rare isotope accelerators offers opportunities for such studies.To date,many relevant measurements have been performed at accelerators using the projectile fragmentation technique,while the measurements at accelerators using isotope separator on-line(ISOL)systems are still quite scarce.In this work,we present the first proof-of-principle experiment with a post-accelerated ISOL beam at the Beijing Radioactive Ion Beam Facility(BRIF)by measuring the angular distribution of elastic scattering for the stable nucleus^(23)Na from the doubly magic nucleus^(40)Ca at energies above the Coulomb barrier.The angular distribution measured by a silicon strip detector array in a scattering chamber using the ISOL beam at BRIF is in good agreement with that measured by the high-precision Q3 D magnetic spectrograph using the nonISOL beam at nearly the same energy.This work provides useful background for making BRIF a powerful tool for the investigation of the reaction dynamics of exotic nuclei.展开更多
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205,12275361,12125509,12222514,11961141003,12005304)the CAST Young Talent Support Plan,the CNNC Science Fund for Talented Young Scholars,and the Continuous-Support Basic Scientific Research Project.
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
基金supported by the National Natural Science Foundation of China(Nos.11490561,11635015,11961141003,11805280,11975316,12075045,12005304,U1867212,U1867214)the National Key Research and Development Project(Nos.2016YFA0400502,2018YFA0404404)+1 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the Leading Innovation Project(Nos.LC192209000701,LC202309000201).
文摘The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest.Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei.The development of rare isotope accelerators offers opportunities for such studies.To date,many relevant measurements have been performed at accelerators using the projectile fragmentation technique,while the measurements at accelerators using isotope separator on-line(ISOL)systems are still quite scarce.In this work,we present the first proof-of-principle experiment with a post-accelerated ISOL beam at the Beijing Radioactive Ion Beam Facility(BRIF)by measuring the angular distribution of elastic scattering for the stable nucleus^(23)Na from the doubly magic nucleus^(40)Ca at energies above the Coulomb barrier.The angular distribution measured by a silicon strip detector array in a scattering chamber using the ISOL beam at BRIF is in good agreement with that measured by the high-precision Q3 D magnetic spectrograph using the nonISOL beam at nearly the same energy.This work provides useful background for making BRIF a powerful tool for the investigation of the reaction dynamics of exotic nuclei.