In the northwestern North Pacific,annual net air-sea CO_(2) flux is greatest in the Kuroshio Extension(KE)zone,owing to its low annual mean partial pressure of CO_(2)(pCO_(2)),and it decreases southward across the bas...In the northwestern North Pacific,annual net air-sea CO_(2) flux is greatest in the Kuroshio Extension(KE)zone,owing to its low annual mean partial pressure of CO_(2)(pCO_(2)),and it decreases southward across the basin.To quantify the influences of factors controlling the latitudinal gradient in CO_(2) uptake,sea surface pCO_(2) and related parameters were investigated in late spring of 2018 in a study spanning the KE,Kuroshio Recirculation(KR),and subtropical zones.We found that the sea-to-air pCO_(2) difference(ΔpCO_(2))was negative and at its lowest in the KE zone.ΔpCO_(2) gradually increased southward across the KR zone,and the sea surface was nearly in air-equilibrium with atmospheric CO_(2) in the subtropical zone.We found that northward cooling and vertical mixing were the two major processes governing the latitudinal gradient in surface pCO_(2) and ΔpCO_(2),while biological influences were relatively minor.In the KE zone affected by upwelling,the vertical-mixing-induced increase in surface pCO_(2) likely canceled out approximately 61%of the decrease in surface pCO_(2) caused by cooling and biological activities.Moreover,the prolonged air-sea equilibration for CO_(2) and relatively short hydraulic retention time jointly led to the low surface pCO_(2) in the KE zone in spring.Ultimately,the cooling KE current flows out of the region before it can be re-equilibrated with atmospheric CO_(2).展开更多
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a vari...The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.展开更多
Photo-production of dissolved inorganic carbon (DIC) from chromophoric dissolved organic matter (CDOM) is an important transformation process in marine carbon cycle, but little is known about this process in Chine...Photo-production of dissolved inorganic carbon (DIC) from chromophoric dissolved organic matter (CDOM) is an important transformation process in marine carbon cycle, but little is known about this process in Chinese coastal systems. This study investigated an estuarine water sample and a coastal seawater sample from the subtropical waters in southeast of China. Water samples were exposed to natural sunlight and the absorption and fluorescence of CDOM as well as the DIC concentration were measured in the summer of 2009. The estuarine water had higher CDOM level, molecular weight and proportion of humic-like fluorescent components than the seawater that exhibited abundant tryptophan-like fluorescent component. After a 3-day irradiation, the CDOM level decreased by 45% in the estuarine water and 20% in the seawater, accompanied with a decrease in the molecular weight and aromaticity of DOM which was inferred from an increase in the absorption spectral slope parameter. The photo-degradation rates of all the five fluorescent components were also notable, in particular two humic-like components (C4 and C5) were removed by 78% and 69% in the estuarine water and by 69% and 56% in the seawater. The estuarine water had a higher photo-production rate of DIC than the seawater (4.4 vs. 2.5 μmol/(L-day)), in part due to its higher CDOM abundance. The differences in CDOM compositions between the twO types of waters might be responsible for the higher susceptibility of the estuarine water to photo-degradation and hence could also affect the photo-production process of DIC.展开更多
The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016...The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016, investigating seasonal variations in dissolved oxygen and carbonate system parameters of this marginal sea. Results showed that the Yellow Sea cold water mass accumulated respiration-induced CO_2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite(Ω_(arag)) of less than 1.5. These seriously acidified seawaters occupied one third of surveyed areas in summer and autumn, likely affecting local calcified organisms and benthic communities. In a future scenario for the 2050 s, in which the atmospheric CO_2 mole fraction increases by 100 μmol mol-1, half of the Yellow Sea benthos would be seasonally covered by acidified seawater having a critical Ω_(arag) of less than 1.5. The corresponding bottom-water p H_T would be around 7.85 in summer, and 7.80 in autumn. Of the China seas, the Yellow Sea cold water mass represents one of the ecosystems most vulnerable to ocean acidification.展开更多
基金The Senior User Project of R/V Kexue of the Center for Ocean Mega-Science,Chinese Academy of Sciences under contract No.KEXUE2020G07the Open Fund Project of the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences under contract No.LTO1906the Survey Project of Environmental Radioactivity Detection in the Western Pacific(R/V Xiangyanghong 3)of the Laboratory of Marine Isotopic Technology and Environmental Risk Assessment,Third Institute of Oceanography,Ministry of Natural Resource.
文摘In the northwestern North Pacific,annual net air-sea CO_(2) flux is greatest in the Kuroshio Extension(KE)zone,owing to its low annual mean partial pressure of CO_(2)(pCO_(2)),and it decreases southward across the basin.To quantify the influences of factors controlling the latitudinal gradient in CO_(2) uptake,sea surface pCO_(2) and related parameters were investigated in late spring of 2018 in a study spanning the KE,Kuroshio Recirculation(KR),and subtropical zones.We found that the sea-to-air pCO_(2) difference(ΔpCO_(2))was negative and at its lowest in the KE zone.ΔpCO_(2) gradually increased southward across the KR zone,and the sea surface was nearly in air-equilibrium with atmospheric CO_(2) in the subtropical zone.We found that northward cooling and vertical mixing were the two major processes governing the latitudinal gradient in surface pCO_(2) and ΔpCO_(2),while biological influences were relatively minor.In the KE zone affected by upwelling,the vertical-mixing-induced increase in surface pCO_(2) likely canceled out approximately 61%of the decrease in surface pCO_(2) caused by cooling and biological activities.Moreover,the prolonged air-sea equilibration for CO_(2) and relatively short hydraulic retention time jointly led to the low surface pCO_(2) in the KE zone in spring.Ultimately,the cooling KE current flows out of the region before it can be re-equilibrated with atmospheric CO_(2).
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601400)the National Natural Science Foundation of China (Grant Nos. 91751207, 91428308, 41722603, 41606153 and 41422603)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 20720170107)CNOOC Projects (Grant Nos. CNOOC-KJ125FZDXM00TJ001-2014 and CNOOCKJ125FZDXM00ZJ001-2014)
文摘The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.
基金supported by the National Natural Science Foundation of China (No. 40776041, 40810069004)the National Basic Research Program (973) of China (No.2011CB409804)the Fundamental Research Funds for the Central Universities (No. 201112G011)
文摘Photo-production of dissolved inorganic carbon (DIC) from chromophoric dissolved organic matter (CDOM) is an important transformation process in marine carbon cycle, but little is known about this process in Chinese coastal systems. This study investigated an estuarine water sample and a coastal seawater sample from the subtropical waters in southeast of China. Water samples were exposed to natural sunlight and the absorption and fluorescence of CDOM as well as the DIC concentration were measured in the summer of 2009. The estuarine water had higher CDOM level, molecular weight and proportion of humic-like fluorescent components than the seawater that exhibited abundant tryptophan-like fluorescent component. After a 3-day irradiation, the CDOM level decreased by 45% in the estuarine water and 20% in the seawater, accompanied with a decrease in the molecular weight and aromaticity of DOM which was inferred from an increase in the absorption spectral slope parameter. The photo-degradation rates of all the five fluorescent components were also notable, in particular two humic-like components (C4 and C5) were removed by 78% and 69% in the estuarine water and by 69% and 56% in the seawater. The estuarine water had a higher photo-production rate of DIC than the seawater (4.4 vs. 2.5 μmol/(L-day)), in part due to its higher CDOM abundance. The differences in CDOM compositions between the twO types of waters might be responsible for the higher susceptibility of the estuarine water to photo-degradation and hence could also affect the photo-production process of DIC.
基金supported by the State Key R&D Project of China(Grant No.2016YFA0601103)the National Natural Science Foundation of China(Grant Nos.91751207&41276061)+2 种基金the Visiting Fellowship in the State Key Laboratory of Marine Environmental Science(Xiamen University)the Fundamental Research Funds of Shandong UniversitySampling surveys were supported by the National Natural Science Foundation of China Open Ship-Time Projects in2012 and 2015
文摘The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016, investigating seasonal variations in dissolved oxygen and carbonate system parameters of this marginal sea. Results showed that the Yellow Sea cold water mass accumulated respiration-induced CO_2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite(Ω_(arag)) of less than 1.5. These seriously acidified seawaters occupied one third of surveyed areas in summer and autumn, likely affecting local calcified organisms and benthic communities. In a future scenario for the 2050 s, in which the atmospheric CO_2 mole fraction increases by 100 μmol mol-1, half of the Yellow Sea benthos would be seasonally covered by acidified seawater having a critical Ω_(arag) of less than 1.5. The corresponding bottom-water p H_T would be around 7.85 in summer, and 7.80 in autumn. Of the China seas, the Yellow Sea cold water mass represents one of the ecosystems most vulnerable to ocean acidification.