Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been ...Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes...Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes have become a research focus for blockchain private key protection.The security of private keys for blockchain user wallet is highly related to user identity authentication and digital asset security.The threshold blockchain private key management schemes based on verifiable secret sharing have made some progress,but these schemes do not consider participants’self-interested behavior,and require trusted nodes to keep private key fragments,resulting in a narrow application scope and low deployment efficiency,which cannot meet the needs of personal wallet private key escrow and recovery in public blockchains.We design a private key management scheme based on rational secret sharing that considers the self-interest of participants in secret sharing protocols,and constrains the behavior of rational participants through reasonable mechanism design,making it more suitable in distributed scenarios such as the public blockchain.The proposed scheme achieves the escrow and recovery of personal wallet private keys without the participation of trusted nodes,and simulate its implementation on smart contracts.Compared to other existing threshold wallet solutions and keymanagement schemes based on password-protected secret sharing(PPSS),the proposed scheme has a wide range of applications,verifiable private key recovery,low communication overhead,higher computational efficiency when users perform one-time multi-key escrow,no need for trusted nodes,and personal rational constraints and anti-collusion attack capabilities.展开更多
In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)con...In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.展开更多
基金The project is provided funding by the Natural Science Foundation of China(Nos.62272124,2022YFB2701400)the Science and Technology Program of Guizhou Province(No.[2020]5017)+3 种基金the Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,GZUAMT2021KF[01]the Postgraduate Innovation Program in Guizhou Province(No.YJSKYJJ[2021]028).
文摘Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
基金the State’s Key Project of Research and Development Plan under Grant 2022YFB2701400in part by the National Natural Science Foundation of China under Grants 62272124 and 62361010+4 种基金in part by the Science and Technology Planning Project of Guizhou Province under Grant[2020]5017in part by the Research Project of Guizhou University for Talent Introduction underGrant[2020]61in part by theCultivation Project of Guizhou University under Grant[2019]56in part by the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant GZUAMT2021KF[01]the Science and Technology Program of Guizhou Province(No.[2023]371).
文摘Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes have become a research focus for blockchain private key protection.The security of private keys for blockchain user wallet is highly related to user identity authentication and digital asset security.The threshold blockchain private key management schemes based on verifiable secret sharing have made some progress,but these schemes do not consider participants’self-interested behavior,and require trusted nodes to keep private key fragments,resulting in a narrow application scope and low deployment efficiency,which cannot meet the needs of personal wallet private key escrow and recovery in public blockchains.We design a private key management scheme based on rational secret sharing that considers the self-interest of participants in secret sharing protocols,and constrains the behavior of rational participants through reasonable mechanism design,making it more suitable in distributed scenarios such as the public blockchain.The proposed scheme achieves the escrow and recovery of personal wallet private keys without the participation of trusted nodes,and simulate its implementation on smart contracts.Compared to other existing threshold wallet solutions and keymanagement schemes based on password-protected secret sharing(PPSS),the proposed scheme has a wide range of applications,verifiable private key recovery,low communication overhead,higher computational efficiency when users perform one-time multi-key escrow,no need for trusted nodes,and personal rational constraints and anti-collusion attack capabilities.
基金supported in part by the Joint Research Fund for Guangzhou University and Hong Kong University of Science and Technology under Grant No.YH202203the Guangzhou Basic Research Program Municipal School(College)Joint Funding Project,the Research Project of Guizhou University for Talent Introduction under Grant No.[2020]61+7 种基金the Cultivation Project of Guizhou University under Grant No.[2019]56the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant No.GZUAMT2021KF[01]the National Natural Science Foundation of China under Grant Nos.51978089 and 62171119the Key R&D Plan of Sichuan Science and Technology Department under Grant No.22ZDYF2726the Chengdu Normal University Scientific Research and Innovation Team under Grant Nos.CSCXTD2020B09,ZZBS201907,CS21ZC01the Open Project of Intelligent Manufacturing Industry Technology Research Institute under Grant No.ZNZZ2208the National Key Research and Development Program of China under Grant No.2020YFB1807201Key research and development plan of Jiangsu Province under Grant No.BE2021013-3.
文摘In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.