Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collec...Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collection and treatment facilities lag behind,so that a large number of wastewater enters urban water,making urban water become gradually black and smelly.In order to provide a good living environment for human beings,a large number of scholars actively explore the treatment technology of black and smelly water.In this paper,the evolution process of black and smelly water was introduced firstly,and then the treatment technology of black and smelly water was summarized.Finally,the prospects for the development of the treatment technology were put forward.展开更多
Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light ...Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light phase to the tiny deformation of optical fiber,Φ-OTDR has been treated as a powerful technique with a wide range of applications.It is fundamental to extract the phase of scattering light wave accurately and the methods include coherent detection,I/Q demodulation,3 by 3 coupler,dual probe pulses,and so on.Meanwhile,researchers have also made great efforts to improve the performance ofΦ-OTDR.The frequency response range,the measurement accuracy,the sensing distance,the spatial resolution,and the accuracy of event discrimination,all have been enhanced by various techniques.Furthermore,lots of researches on the applications in various kinds of fields have been carried out,where certain modifications and techniques have been developed.Therefore,Φ-OTDR remains as a booming technique in both researches and applications.展开更多
Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural respo...Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.展开更多
Juvenile three-keeled pond turtles(Chinemys reevesii) were fed diets supplemented with vitamin C(Vc) at doses of 0(basal diet, Vc0), 100(Vc100), 200(Vc200), 500(Vc500) and 2500(Vc2500) mg/kg diets at 28°C for 4 w...Juvenile three-keeled pond turtles(Chinemys reevesii) were fed diets supplemented with vitamin C(Vc) at doses of 0(basal diet, Vc0), 100(Vc100), 200(Vc200), 500(Vc500) and 2500(Vc2500) mg/kg diets at 28°C for 4 weeks, respectively. Then, the water temperature was gradually reduced to 10°C, and the turtles were induced into hibernation. Liver tissue samples were collected at three time points: start of hibernation(T1), 4 and 6 weeks’ hibernation(T2 and T3). A control group fed with the basal diet was set to parallel the whole treatment process, but reared at 28°C constantly. The results showed that hibernation mildly affected the antioxidant system and the influence varied with hibernating time. Hepatic malondialdehyde content of the Vc100 group was significantly lower than that of the other groups at T1. At T2, hepatic MDA in the groups of Vc500 and Vc2500 decreased significantly, while no clear differences were found among all groups at T3. The activities of antioxidant enzymes showed a positive correlation with dietary Vc dose before hibernation. After hibernation, total antioxidant capability was not affected by Vc. Superoxide dismutase activity became similar in different groups at T2, but decreased in higher Vc groups(≥ 200 mg/kg) at T3. Glutathione peroxidase and glutathione-S-transferase activities decreased significantly with dietary Vc supplementation(≥ 100 mg/kg) at T2, but recovered at T3. The result indicates that under normal rearing condition, low dietary Vc supplementation(< 100 mg/kg) might be beneficial to the antioxidant defense system. The effect of dietary Vc on the antioxidant defense system differed during hibernation.展开更多
Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body.Dissecting the regulatory mechanism of carotenoid metabolism in plants repre...Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body.Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding.In this study,we determined that SlAP2c,an APETALA2(AP2)family member,acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato(Solanum lycopersicum).Knockout of SlAP2c in both the“Micro Tom”and“Ailsa Craig”backgrounds resulted in greater lycopene accumulation,whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type.We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters.Moreover,SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS(TPL)2/4 and forms a complex with histone deacetylase(had)1/3,thereby reducing the histone acetylation levels of lycopene biosynthesis genes.Furthermore,SlAP2a,a homolog of SlAP2c,acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening.Therefore,we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato,laying the foundation for the manipulation of carotenoid metabolism in plants.展开更多
The Internet of Vehicles(IoV)plays a crucial role in providing diversified services because of its powerful capability of collecting real-time information.Generally,collected information is transmitted to a centralize...The Internet of Vehicles(IoV)plays a crucial role in providing diversified services because of its powerful capability of collecting real-time information.Generally,collected information is transmitted to a centralized resourceintensive cloud platform for service implementation.Edge Computing(EC)that deploys physical resources near road-side units is involved in IoV to support real-time services for vehicular users.Additionally,many measures are adopted to optimize the performance of EC-enabled IoV,but they hardly help make dynamic decisions according to real-time requests.Artificial Intelligence(AI)is capable of enhancing the learning capacity of edge devices and thus assists in allocating resources dynamically.Although extensive research has employed AI to optimize EC performance,summaries with relative concepts or prospects are quite few.To address this gap,we conduct an exhaustive survey about utilizing AI in edge service optimization in IoV.Firstly,we establish the general condition and relative concepts about IoV,EC,and AI.Secondly,we review the edge service frameworks for IoV and explore the use of AI in edge server placement and service offloading.Finally,we discuss a number of open issues in optimizing edge services with AI.展开更多
文摘Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collection and treatment facilities lag behind,so that a large number of wastewater enters urban water,making urban water become gradually black and smelly.In order to provide a good living environment for human beings,a large number of scholars actively explore the treatment technology of black and smelly water.In this paper,the evolution process of black and smelly water was introduced firstly,and then the treatment technology of black and smelly water was summarized.Finally,the prospects for the development of the treatment technology were put forward.
基金supported in part by the Startup Fund from Southern University of Science and Technology and Shenzhen government under Grant No.Y01236128by the National Natural Science Foundation of China(NSFC)under Grant Nos.61627816 and 61975076by the Qing Lan Project of Jiangsu Province。
文摘Phase-sensitive optical time-domain reflectometry(Φ-OTDR)has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber.Relying on the ultra-sensitivity of light phase to the tiny deformation of optical fiber,Φ-OTDR has been treated as a powerful technique with a wide range of applications.It is fundamental to extract the phase of scattering light wave accurately and the methods include coherent detection,I/Q demodulation,3 by 3 coupler,dual probe pulses,and so on.Meanwhile,researchers have also made great efforts to improve the performance ofΦ-OTDR.The frequency response range,the measurement accuracy,the sensing distance,the spatial resolution,and the accuracy of event discrimination,all have been enhanced by various techniques.Furthermore,lots of researches on the applications in various kinds of fields have been carried out,where certain modifications and techniques have been developed.Therefore,Φ-OTDR remains as a booming technique in both researches and applications.
基金National Science Foundation of China under grant No.51378107Fundamental Research Funds for the Central Universities and Doctoral Research Fund by Southeast University under Grant No.YBJJ-1442
文摘Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these tmcertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.
文摘Juvenile three-keeled pond turtles(Chinemys reevesii) were fed diets supplemented with vitamin C(Vc) at doses of 0(basal diet, Vc0), 100(Vc100), 200(Vc200), 500(Vc500) and 2500(Vc2500) mg/kg diets at 28°C for 4 weeks, respectively. Then, the water temperature was gradually reduced to 10°C, and the turtles were induced into hibernation. Liver tissue samples were collected at three time points: start of hibernation(T1), 4 and 6 weeks’ hibernation(T2 and T3). A control group fed with the basal diet was set to parallel the whole treatment process, but reared at 28°C constantly. The results showed that hibernation mildly affected the antioxidant system and the influence varied with hibernating time. Hepatic malondialdehyde content of the Vc100 group was significantly lower than that of the other groups at T1. At T2, hepatic MDA in the groups of Vc500 and Vc2500 decreased significantly, while no clear differences were found among all groups at T3. The activities of antioxidant enzymes showed a positive correlation with dietary Vc dose before hibernation. After hibernation, total antioxidant capability was not affected by Vc. Superoxide dismutase activity became similar in different groups at T2, but decreased in higher Vc groups(≥ 200 mg/kg) at T3. Glutathione peroxidase and glutathione-S-transferase activities decreased significantly with dietary Vc supplementation(≥ 100 mg/kg) at T2, but recovered at T3. The result indicates that under normal rearing condition, low dietary Vc supplementation(< 100 mg/kg) might be beneficial to the antioxidant defense system. The effect of dietary Vc on the antioxidant defense system differed during hibernation.
基金supported in part by the National Natural Science Foundation of China(no.32372780,no.32172643)the Applied Basic Research Category of Science and Technology Program of Sichuan Province(2021YFQ0071,2022YFSY0059-1,2021YFYZ00105-LH)+2 种基金the Technology Innovation and Application Development Program of Chongqing(cstc2021jscx-cylh X0001)the Natural Science Foundation of Sichuan Province,China(2023NSFSC1991)the Institutional Research Funding of Sichuan University(2022SCUNL105)。
文摘Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body.Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding.In this study,we determined that SlAP2c,an APETALA2(AP2)family member,acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato(Solanum lycopersicum).Knockout of SlAP2c in both the“Micro Tom”and“Ailsa Craig”backgrounds resulted in greater lycopene accumulation,whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type.We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters.Moreover,SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS(TPL)2/4 and forms a complex with histone deacetylase(had)1/3,thereby reducing the histone acetylation levels of lycopene biosynthesis genes.Furthermore,SlAP2a,a homolog of SlAP2c,acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening.Therefore,we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato,laying the foundation for the manipulation of carotenoid metabolism in plants.
基金supported by the Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps(No.2020DB005)the National Key R&D Program of China(No.2019YFE0190500)+3 种基金the National Natural Science Foundation of China(Nos.61702442,61862065,and 61702277)the Application Basic Research Project in Yunnan Province(No.2018FB105)the Major Project of Science and Technology of Yunnan Province(Nos.202002AD080002 and 2019ZE005)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund。
文摘The Internet of Vehicles(IoV)plays a crucial role in providing diversified services because of its powerful capability of collecting real-time information.Generally,collected information is transmitted to a centralized resourceintensive cloud platform for service implementation.Edge Computing(EC)that deploys physical resources near road-side units is involved in IoV to support real-time services for vehicular users.Additionally,many measures are adopted to optimize the performance of EC-enabled IoV,but they hardly help make dynamic decisions according to real-time requests.Artificial Intelligence(AI)is capable of enhancing the learning capacity of edge devices and thus assists in allocating resources dynamically.Although extensive research has employed AI to optimize EC performance,summaries with relative concepts or prospects are quite few.To address this gap,we conduct an exhaustive survey about utilizing AI in edge service optimization in IoV.Firstly,we establish the general condition and relative concepts about IoV,EC,and AI.Secondly,we review the edge service frameworks for IoV and explore the use of AI in edge server placement and service offloading.Finally,we discuss a number of open issues in optimizing edge services with AI.