期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
1
作者 Heng zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song weijie zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy 被引量:4
2
作者 Bin Xu Fanjun Zeng +15 位作者 Jialong Deng Lintong Yao Shengbo Liu Hengliang Hou Yucheng Huang Hongyuan Zhu Shaowei Wu Qiaxuan Li weijie zhan Hongrui Qiu Huili Wang Yundong Li Xianzhu Yang Ziyang Cao Yu zhang Haiyu Zhou 《Bioactive Materials》 SCIE CSCD 2023年第9期337-347,共11页
The abnormal activation of epidermal growth factor receptor(EGFR)drives the development of non-small cell lung cancer(NSCLC).The EGFR-targeting tyrosine kinase inhibitor osimertinib is frequently used to clinically tr... The abnormal activation of epidermal growth factor receptor(EGFR)drives the development of non-small cell lung cancer(NSCLC).The EGFR-targeting tyrosine kinase inhibitor osimertinib is frequently used to clinically treat NSCLC and exhibits marked efficacy in patients with NSCLC who have an EGFR mutation.However,free osimertinib administration exhibits an inadequate response in vivo,with only~3%patients demonstrating a complete clinical response.Consequently,we designed a biomimetic nanoparticle(CMNP^(@Osi))comprising a polymeric nanoparticle core and tumor cell-derived membrane-coated shell that combines membrane-mediated homologous and molecular targeting for targeted drug delivery,thereby supporting a dual-target strategy for enhancing osimertinib efficacy.After intravenous injection,CMNP^(@Osi)accumulates at tumor sites and displays enhanced uptake into cancer cells based on homologous targeting.Osimertinib is subsequently released into the cytoplasm,where it suppresses the phosphorylation of upstream EGFR and the downstream AKT signaling pathway and inhibits the proliferation of NSCLC cells.Thus,this dual-targeting strategy using a biomimetic nanocarrier can enhance molecular-targeted drug delivery and improve clinical efficacy. 展开更多
关键词 Biomimetic nanoparticles Membrane targeting EGFR mutation Tyrosine kinase inhibitor Intracellular drug delivery Clinical efficacy Non-small cell lung cancer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部