期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A robust synthesis route of confined carbyne
1
作者 Yanghao Feng Wendi Zhang +5 位作者 Kunpeng Tang Yingzhi Chen Jiou Zhang Kecheng Cao weili cui Lei Shi 《Nano Research》 SCIE EI CSCD 2024年第7期6274-6280,共7页
The unique mechanical,optical,and electrical properties of carbyne,a one-dimensional allotrope of carbon,make it a highly promising material for various applications.It has been demonstrated that carbon nanotubes(CNTs... The unique mechanical,optical,and electrical properties of carbyne,a one-dimensional allotrope of carbon,make it a highly promising material for various applications.It has been demonstrated that carbon nanotubes(CNTs)can serve as an ideal host for the formation of confined carbyne(CC),with the yield being influenced by the quality of the carbon nanotubes for confinement and the carbon source for carbyne growth.In this study,a robust synthesis route of CC within CNTs is proposed.C70 was utilized as a precursor to provide an additional carbon source,based on its ability to supply more carbon atoms than C60 at the same filling ratio.Multi-step transformation processes,including defect creation,were designed to enhance the yield of CC.As a result,the yield of CC was significantly increased for the C70 encapsulated single-walled CNTs by more than an order of magnitude than the empty counterparts,which also surpasses that of the double-walled CNTs,making it the most effective route for synthesizing CC.These findings highlight the importance of the additional carbon source and the optimal pathway for CC formation,offering valuable insights for the application of materials with high yield. 展开更多
关键词 confined carbyne yield enhancement carbon nanotube C70 encapsulation defect introduction Raman spectroscopy
原文传递
Microwave heating as a universal method to transform confined molecules into armchair graphene nanoribbons 被引量:1
2
作者 Haoyuan Zhang Yingzhi Chen +11 位作者 Kunpeng Tang Ziheng Lin Xuan Li Hongwei Zhang Yifan Zhang Chi Ho Wong Chi Wah Leung Chee Leung Mak Yuan Hu weili cui Kecheng Cao Lei Shi 《Nano Research》 SCIE EI CSCD 2023年第7期10644-10651,共8页
Armchair graphene nanoribbons(AGNRs)with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps.AGNRs are usually synthesized by polymerizing pre... Armchair graphene nanoribbons(AGNRs)with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps.AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface.However,it is time-consuming and not suitable for large-scale production.AGNRs can also be grown by transforming precursor molecules inside single-walled carbon nanotubes(SWCNTs)via furnace annealing,but the obtained AGNRs are normally twisted.In this work,microwave heating is applied for transforming precursor molecules into AGNRs.The fast heating process allows synthesizing the AGNRs in seconds.Several different molecules were successfully transformed into AGNRs,suggesting that it is a universal method.More importantly,as demonstrated by Raman spectroscopy,aberrationcorrected high-resolution transmission electron microscopy and theoretical calculations,less twisted AGNRs are synthesized by the microwave heating than the furnace annealing.Our results reveal a route for rapid production of AGNRs in large scale,which would benefit future applications in novel AGNRs-based semiconductor devices. 展开更多
关键词 armchair graphene nanoribbons(AGNRs) microwave heating single-walled carbon nanotubes(SWCNTs) Raman spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部