Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) o...Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) over the Asian continent. Our principal findings are:(1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September.(2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons.(3)The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the...An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got.展开更多
This study was conducted to investigate changes in the expression of AP1 gene in flowering process. Potassium nitrate and ethephon were sprayed on 7- year-old Guifei trees out of season. The results showed that AP1 ge...This study was conducted to investigate changes in the expression of AP1 gene in flowering process. Potassium nitrate and ethephon were sprayed on 7- year-old Guifei trees out of season. The results showed that AP1 gene had a higher expression level in terminal buds, and especially, the expression level increased significantly in late stage of flower bud differentiation. Potassium nitrate and ethephon promoted flower bud differentiation, and the expression level of AP1 gene in- creased in flowering process remarkably. Expression ofAP1 gene of the potassium nitrate treatment was significantly greater than that of the ethephon treatment and the CK.展开更多
Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aeroso...Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aerosol and ozone of 100 hPa level with the monthly SAGE dataset from July 1988 to December 1993. Results indicate that (i) the mass from troposphere to stratosphere is magistral station in summer over the Tibetan Plateau and its surroundings. The air transport reaches the summit in midsummer with two large value centers, which lie in the north of Bengal Bay and southeastern Tibetan Plateau, respectively. A large value center, which lies over the Tibetan Plateau, is smaller than that aforementioned. In winter, the mass transport is from stratosphere to troposphere, and reaches the minimum in January. (ii) As far as the 19-year mean cross-tropopause mass exchange from June to September is concerned, the net mass transport is 14.84×l018 kg from troposphere to stratosphere. So the area from the展开更多
Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Jap...Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Japan Meteorological Agency),and NCEP-CFSR(Climate Forecast System Reanalysis)datasets was evaluated.The results showed that the NCEP-CFSR OVTP became strong in the summers of 1979–2009,whereas it became weak according to ERA-Interim and JRA-55.Satellite data merged with TOMS(Total Ozone Mapping Spectrometer)and OMI(Ozone Monitoring Instrument)agreed with the OVTP trend of NCEP-CFSR.The OVTP strengthening in NCEP-CFSR may have been caused by SAH intensification,a rising tropopause,and increasing ozone over non-TP(non-Tibetan Plateau)areas(27°–37°N,〈75°E and〉105°E).Analogously,the OVTP weakening in ERA-Interim and JRA-55 may have been affected by weakening SAH,descending tropopause,and decreasing non-TP ozone.展开更多
基金funded by the National Science Foundation of China (91537213, 91837311, 41675039, 41875048)
文摘Using four satellite data sets(TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone(TCO) and its zonal deviation(TCO*), and reveal the vertical structure of the Ozone Low(OV) over the Asian continent. Our principal findings are:(1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low exists from May to September.(2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons.(3)The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported by the National Natural Science Foundation of China(61301011)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2012010)+1 种基金the China Postdoctoral Science Foundation(2013M540279)the Heilongjiang Postdoctoral Financial Assistance(LBH-Z11157)
文摘An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got.
基金Supported by CATAS-TCGRI(1630032013010)Special Fund for Agro-scientific Research in the Public Interest(201203092)
文摘This study was conducted to investigate changes in the expression of AP1 gene in flowering process. Potassium nitrate and ethephon were sprayed on 7- year-old Guifei trees out of season. The results showed that AP1 gene had a higher expression level in terminal buds, and especially, the expression level increased significantly in late stage of flower bud differentiation. Potassium nitrate and ethephon promoted flower bud differentiation, and the expression level of AP1 gene in- creased in flowering process remarkably. Expression ofAP1 gene of the potassium nitrate treatment was significantly greater than that of the ethephon treatment and the CK.
文摘Using NCEP dataset we calculate the exchange of mass across the thermal tropopause by the Wei’s method from 1978 to 1997 over the Tibetan Plateau and its surroundings. We also calculate the annual variation of aerosol and ozone of 100 hPa level with the monthly SAGE dataset from July 1988 to December 1993. Results indicate that (i) the mass from troposphere to stratosphere is magistral station in summer over the Tibetan Plateau and its surroundings. The air transport reaches the summit in midsummer with two large value centers, which lie in the north of Bengal Bay and southeastern Tibetan Plateau, respectively. A large value center, which lies over the Tibetan Plateau, is smaller than that aforementioned. In winter, the mass transport is from stratosphere to troposphere, and reaches the minimum in January. (ii) As far as the 19-year mean cross-tropopause mass exchange from June to September is concerned, the net mass transport is 14.84×l018 kg from troposphere to stratosphere. So the area from the
基金Supported by the National Natural Science Foundation of China(41305039,41675039,91537213,41375047,41375092,41475140,41641042,and 41575057)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Japan Meteorological Agency),and NCEP-CFSR(Climate Forecast System Reanalysis)datasets was evaluated.The results showed that the NCEP-CFSR OVTP became strong in the summers of 1979–2009,whereas it became weak according to ERA-Interim and JRA-55.Satellite data merged with TOMS(Total Ozone Mapping Spectrometer)and OMI(Ozone Monitoring Instrument)agreed with the OVTP trend of NCEP-CFSR.The OVTP strengthening in NCEP-CFSR may have been caused by SAH intensification,a rising tropopause,and increasing ozone over non-TP(non-Tibetan Plateau)areas(27°–37°N,〈75°E and〉105°E).Analogously,the OVTP weakening in ERA-Interim and JRA-55 may have been affected by weakening SAH,descending tropopause,and decreasing non-TP ozone.