期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS 被引量:2
1
作者 Yueying YANG weimao qian +1 位作者 Hongwei ZHANG Yuming CHU 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期719-728,共10页
In the article,we prove that the double inequalities Gp[λ1a+(1-λ1)b,λ1 b+(1-λ1)a]A1-p(a,b)<T[A(a,b),G(a,b)]<Gp[μ1 a+(1-μ1)b,μ1b+(1-μ1)a]A1-p(a,b),Cs[λ^(2) a+(1-λ2)b,λ2 b+(1-λ2)a]A1-s(a,b)<T[A(a,b)... In the article,we prove that the double inequalities Gp[λ1a+(1-λ1)b,λ1 b+(1-λ1)a]A1-p(a,b)<T[A(a,b),G(a,b)]<Gp[μ1 a+(1-μ1)b,μ1b+(1-μ1)a]A1-p(a,b),Cs[λ^(2) a+(1-λ2)b,λ2 b+(1-λ2)a]A1-s(a,b)<T[A(a,b),Q(a,b)]<Cs[μ2 a+(1-μ2)b,μ2 b+(1-μ2)a]A1-p(a,b)hold for all a,b>0 with a≠b if and only ifλ1≤1/2-(1-(2/π)2/p)1/2/2,μ1≥1/2-(2p)1/2/(4 p),λ2≤1/2+(2(3/(2 s)(E(21/2/2)/π)1/s)-1)1/2/2 andμ2≥1/2+s1/2/(4 s)ifλ1,μ1∈(0,1/2),λ2,μ2∈(1/2,1),p≥1 and s≥1/2,where G(a,b)=(ab)1/2,A(a,b)=(a+b)/2,T(a,b)=∫0π/2(a2 cos2 t+b2 sin2)1/2 tdt/π,Q(a,b)=((a2+b2)/2)1/2,C(a,b)=(a2+b2)/(a+b)and E(r)=∫0π/2(1-r^(2) sin^(2))1/2 tdt. 展开更多
关键词 Geometric mean arithmetic mean Toader mean ontraharmonic mean complete elliptic integral
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部