The ASK1 (ARABIDOPSIS SKP1-LIKE) protein is a critical component of the SCF (Skpl-Cullin-F box protein) ubiquitin ligase complexes that recruit target proteins for degradation by the 26S proteosome. To investigate...The ASK1 (ARABIDOPSIS SKP1-LIKE) protein is a critical component of the SCF (Skpl-Cullin-F box protein) ubiquitin ligase complexes that recruit target proteins for degradation by the 26S proteosome. To investigate proteins that are affected by the ASK1-mediated proteolysis pathway in Arabidopsis flowers, we compared the proteomes of the Arabidopsis wild type and ask1 mutant flower buds using two-dimensional electrophoresis (2-DE). Ten protein spots with higher or lower abundance in the ask1 mutant flowers compared to wild type flowers were excised and subjected to further mass spectrometry (MS) analysis. The results showed that they were proteins involved in photomorphogenesis, circadian oscillation, post-translation process, stress-responses and cell expansion or elongation, suggesting that those processes were affected in the ask1 mutant. The transcript levels of these genes were also compared based on the Affymetrix gene chip microarray data. No significant difference was observed for most of the genes, suggesting that the proteins with elevated levels of accumulation in the ask1 mutant could be candidate targets regulated by an ASK 1-mediated proteolysis pathway. These results help to elucidate the pleiotropic functions of ASK1 in Arabidopsis developmental processes and also demonstrate the importance and necessity of studying protein levels with respect to gene functions.展开更多
BACKGROUND: Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treat...BACKGROUND: Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. OBJECTIVE: To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. METHODS: A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell'" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. RESULTS: Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. CONCLUSION: Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.展开更多
基金We thank Dr Yue Jun from Institute of Genetics at Fudan University for kind help and advice on 2-DE technique,Hasan Koc from the proteomic center at the Pennsylvania State University for help with protein identification with MS and Qing Zhang for assistance with the normalization of the microarray data.This work was supported by the Youth Exploration Funding of School of Life Sciences at Fudan Universityin part by a grant to H.M.from the US National Science Foundation(MCB-0092075).
文摘The ASK1 (ARABIDOPSIS SKP1-LIKE) protein is a critical component of the SCF (Skpl-Cullin-F box protein) ubiquitin ligase complexes that recruit target proteins for degradation by the 26S proteosome. To investigate proteins that are affected by the ASK1-mediated proteolysis pathway in Arabidopsis flowers, we compared the proteomes of the Arabidopsis wild type and ask1 mutant flower buds using two-dimensional electrophoresis (2-DE). Ten protein spots with higher or lower abundance in the ask1 mutant flowers compared to wild type flowers were excised and subjected to further mass spectrometry (MS) analysis. The results showed that they were proteins involved in photomorphogenesis, circadian oscillation, post-translation process, stress-responses and cell expansion or elongation, suggesting that those processes were affected in the ask1 mutant. The transcript levels of these genes were also compared based on the Affymetrix gene chip microarray data. No significant difference was observed for most of the genes, suggesting that the proteins with elevated levels of accumulation in the ask1 mutant could be candidate targets regulated by an ASK 1-mediated proteolysis pathway. These results help to elucidate the pleiotropic functions of ASK1 in Arabidopsis developmental processes and also demonstrate the importance and necessity of studying protein levels with respect to gene functions.
文摘BACKGROUND: Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. OBJECTIVE: To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. METHODS: A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell'" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. RESULTS: Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. CONCLUSION: Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.