Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en...Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.展开更多
There is a large amount of fat in the postganglionic segment of the brachial plexus nerve.The use of short T1 inversion recovery pulse sequence may improve signal strength of the brachial plexus postganglionic segment...There is a large amount of fat in the postganglionic segment of the brachial plexus nerve.The use of short T1 inversion recovery pulse sequence may improve signal strength of the brachial plexus postganglionic segment.The present study revealed that the combination of three-dimensional fast imaging employing steady-state acquisition with phase-cycled and short T1 inversion recovery pulse sequence clearly displayed the anatomical morphology and structure of the brachial plexus nerve,together with maximum intensity projection,volume rendering and other three-dimensional reconstruction techniques.Our results suggested that this method is also suitable for providing accurate assessment and diagnosis of the site,severity and scope of brachial plexus injury.展开更多
BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial refere...BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses systems for Morris Water Maze. RESULTS: Twenty-eight rats were included in the final analysis, without any loss. In the first trial, between day 2 and 4, escape latency and swimming distance increased significantly in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01); percentage of time in correct quarter and memory scores, however, decreased in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01). The escape latency, swimming distance, percentage of time in correct quarter, and memory scores in the second trial was not significantly different among the three groups (P 〉 0.05). CONCLUSION: Paradoxical sleep deprivation inhibits spatial reference memory, but not working memory.展开更多
This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry...This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.展开更多
This paper presents isogeometric analysis(IGA)-based topology optimization for electrical performance of three-dimensional(3D)flexoelectric structures.IGA is employed to provide{C}^{1}continuity in shape function,whic...This paper presents isogeometric analysis(IGA)-based topology optimization for electrical performance of three-dimensional(3D)flexoelectric structures.IGA is employed to provide{C}^{1}continuity in shape function,which is required in treating high-order electromechanical coupling equations.To improve the computational efficiency in treating 3D problems,the redundant degrees of freedom removal technique is introduced.Regularization treatments are also implemented to avoid the numerical singularity induced by flexoelectricity.Both virtual loads and strain energy constraints are taken into consideration to prevent unexpected structural disconnection.Numerical examples and experiments on optimized structures demonstrate that the flexoelectric performance can be effectively improved using the proposed approach.展开更多
Dual-ion batteries(DIBs),a novel energy storage technology wherein both anions and cations actively participate in the electrochemical redox process,hold great promise for further cost reduction in chemical energy sto...Dual-ion batteries(DIBs),a novel energy storage technology wherein both anions and cations actively participate in the electrochemical redox process,hold great promise for further cost reduction in chemical energy storage.Organic materials have garnered significant attention as cathode materials for DIBs due to high working voltage,exceptional rate capability,environmental friendliness,and unique designable structure.This review provides a detailed discussion of the energy storage mechanism and typical characteristics of organic cathode materials from various reaction active sites.This work also highlights the current limitations and proposes ideas for improvement.Finally,potential future directions for the advancement of DIBs are summarized.展开更多
Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element...Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element(FE)mesh.This treatment,however,may not only increase the computational cost for structural analysis but also lead to unfavorable numerical instabilities,especially when large deformations and dynamic/buckling behaviors are involved.In the present work,a new meshless moving morphable component-based method(ML-MMC),which structural analysis is carried out only on the solid region occupied by components,is proposed.In this approach,the coupling of discrete components is achieved through the adaptively constructed influence domain of the meshless shape function.Therefore,the singularity problem of the stiffness matrix can be naturally avoided without introducing weak artificial material.Compared with traditional methods,the number of degrees of freedoms(DOFs)can be reduced substantially under this treatment.The effectiveness of the proposed approach is also illustrated by some representative examples.展开更多
Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and...Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and the numerical instability that may occur during optimization need to be investigated.In the present work,an explicit topology optimization approach is proposed to enhance the sound quality of acoustic-mechanical structures,where the sound quality is described,resorting to frequency response within a specified frequency band.To this end,the moving morphable component(MMC)-based approach is adopted to achieve the explicit topology design,and the mixed finite element method is introduced to evaluate the sound quality.With the use of the explicit description of MMC,the acoustic-structure boundary can be captured accurately,which is important for acoustic response analysis.Moreover,a regularization topology optimization formulation is also developed to avoid the numerical issues produced in some special frequency bands.Numerical examples demonstrate the effectiveness of the proposed approach in improving sound quality performance.展开更多
This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this wo...This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this work,a set of morphable components are introduced as the basic building blocks for topology optimization,and the optimized structural layout can be found by optimizing the parameters characterizing the locations and geometries of the components explicitly.The degree of freedom(DOF)elimination technique is also employed to delete unnecessary DOFs at each iteration.Since the proposed approach solves the corresponding optimization problems in an explicit way,some challenging issues(e.g.,the large computational burden related to finite element analysis and sensitivity analysis,the localized eigenmodes in low material density regions,and the impact of excitation frequency on the optimization process)associated with the traditional approaches can be circumvented naturally.Numerical results show that the proposed approach is effective for solving topology optimization problems involving structural dynamic behaviors,especially when high-frequency responses are considered.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Technology(YBKT21-06,YKBT23-05).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
文摘There is a large amount of fat in the postganglionic segment of the brachial plexus nerve.The use of short T1 inversion recovery pulse sequence may improve signal strength of the brachial plexus postganglionic segment.The present study revealed that the combination of three-dimensional fast imaging employing steady-state acquisition with phase-cycled and short T1 inversion recovery pulse sequence clearly displayed the anatomical morphology and structure of the brachial plexus nerve,together with maximum intensity projection,volume rendering and other three-dimensional reconstruction techniques.Our results suggested that this method is also suitable for providing accurate assessment and diagnosis of the site,severity and scope of brachial plexus injury.
基金the National Natural Science Foundation of China, No.30670677
文摘BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses systems for Morris Water Maze. RESULTS: Twenty-eight rats were included in the final analysis, without any loss. In the first trial, between day 2 and 4, escape latency and swimming distance increased significantly in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01); percentage of time in correct quarter and memory scores, however, decreased in the paradoxical sleep deprivation group compared to the home cage control and tank control groups (P 〈 0.01). The escape latency, swimming distance, percentage of time in correct quarter, and memory scores in the second trial was not significantly different among the three groups (P 〉 0.05). CONCLUSION: Paradoxical sleep deprivation inhibits spatial reference memory, but not working memory.
基金supported by the National Key Research and Development Plan (2020YFB1709401)the National Natural Science Foundation (11821202,11732004,12002077,12002073)+1 种基金the Fundamental Research Funds for Central Universities (DUT21RC (3)076,DUT20RC (3)020)Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-063)and 111 Project (B14013).
文摘This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.
基金support from the National Natural Science Foundation of China(12272075)Liao Ning Revitalization Talents Program(XLYC2001003,XLYC1907119)+1 种基金Fundamental Research Funds for the Central Universities(DUT22QN238)Program for Changjiang Scholars,Innovative Research Team in University(PCSIRT)and 111 Project(B14013)is gratefully acknowledged.
文摘This paper presents isogeometric analysis(IGA)-based topology optimization for electrical performance of three-dimensional(3D)flexoelectric structures.IGA is employed to provide{C}^{1}continuity in shape function,which is required in treating high-order electromechanical coupling equations.To improve the computational efficiency in treating 3D problems,the redundant degrees of freedom removal technique is introduced.Regularization treatments are also implemented to avoid the numerical singularity induced by flexoelectricity.Both virtual loads and strain energy constraints are taken into consideration to prevent unexpected structural disconnection.Numerical examples and experiments on optimized structures demonstrate that the flexoelectric performance can be effectively improved using the proposed approach.
基金supported by the National Natural Science Foundation of China(22075027,52003030)the Starting Grant from Beijing Institute of Technology and the State Key Laboratory of Explosion Science and Safety Protection(YBKT21-06)。
文摘Dual-ion batteries(DIBs),a novel energy storage technology wherein both anions and cations actively participate in the electrochemical redox process,hold great promise for further cost reduction in chemical energy storage.Organic materials have garnered significant attention as cathode materials for DIBs due to high working voltage,exceptional rate capability,environmental friendliness,and unique designable structure.This review provides a detailed discussion of the energy storage mechanism and typical characteristics of organic cathode materials from various reaction active sites.This work also highlights the current limitations and proposes ideas for improvement.Finally,potential future directions for the advancement of DIBs are summarized.
基金supported by the National Natural Science Foundation of China(Grant Nos.11821202,12002073,and 12002077)the National Key Research and Development Plan(Grant No.2020YFB1709400)+3 种基金Liaoning Revitalization Talents Program(Grant Nos.XLYC2001003 and XLYC1907119)Dalian Talent Innovation Program(Grant No.2020RQ099)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT20RC(3)020,DUT21RC(3)076,and DUT22QN238)111 Project(Grant No.B14013).
基金supported by the National Natural Science Foundation(Grant Nos.11821202,11732004,12002077 and 12002073)the National Key Research and Development Plan(Grant No.2020YFB1709401)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.DUT21-RC(3)076 and DUT20RC(3)020)the Doctoral Scientific Research Foundation of Liaoning Province(Grant No.2021-BS-063)111 Project(Grant No.B14013).
文摘Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element(FE)mesh.This treatment,however,may not only increase the computational cost for structural analysis but also lead to unfavorable numerical instabilities,especially when large deformations and dynamic/buckling behaviors are involved.In the present work,a new meshless moving morphable component-based method(ML-MMC),which structural analysis is carried out only on the solid region occupied by components,is proposed.In this approach,the coupling of discrete components is achieved through the adaptively constructed influence domain of the meshless shape function.Therefore,the singularity problem of the stiffness matrix can be naturally avoided without introducing weak artificial material.Compared with traditional methods,the number of degrees of freedoms(DOFs)can be reduced substantially under this treatment.The effectiveness of the proposed approach is also illustrated by some representative examples.
基金support from the Foundation for Innovative Research Groups of the National Natural Science Foundation(11821202)the National Natural Science Foundation(12272075)+1 种基金Liaoning Revitalization Talents Program(XLYC2001003,XLYC1907119)Fundamental Research Funds for the Central Universities(DUT22QN238)are gratefully acknowledged.
文摘Sound quality is one of the essential criteria for measuring the acoustic performance of acoustic devices.In contrast to the optimization of sound characteristics,both the quantitative description of sound quality and the numerical instability that may occur during optimization need to be investigated.In the present work,an explicit topology optimization approach is proposed to enhance the sound quality of acoustic-mechanical structures,where the sound quality is described,resorting to frequency response within a specified frequency band.To this end,the moving morphable component(MMC)-based approach is adopted to achieve the explicit topology design,and the mixed finite element method is introduced to evaluate the sound quality.With the use of the explicit description of MMC,the acoustic-structure boundary can be captured accurately,which is important for acoustic response analysis.Moreover,a regularization topology optimization formulation is also developed to avoid the numerical issues produced in some special frequency bands.Numerical examples demonstrate the effectiveness of the proposed approach in improving sound quality performance.
基金Financial support from the National Natural Science Foundation of China (11821202,11872141,11922204,12002073)the National Key Research and Development Plan (2020YFB1709401)+1 种基金the Fundamental Research Funds for the Central Universities[DUT20RC (3)020]the 111 Project (B14013)is gratefully acknowledged.
文摘This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this work,a set of morphable components are introduced as the basic building blocks for topology optimization,and the optimized structural layout can be found by optimizing the parameters characterizing the locations and geometries of the components explicitly.The degree of freedom(DOF)elimination technique is also employed to delete unnecessary DOFs at each iteration.Since the proposed approach solves the corresponding optimization problems in an explicit way,some challenging issues(e.g.,the large computational burden related to finite element analysis and sensitivity analysis,the localized eigenmodes in low material density regions,and the impact of excitation frequency on the optimization process)associated with the traditional approaches can be circumvented naturally.Numerical results show that the proposed approach is effective for solving topology optimization problems involving structural dynamic behaviors,especially when high-frequency responses are considered.