We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field...Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金supported by the National Basic Research Program of China(Grant No.2013CBA01501)the National Nature Science Foundation of China(Grant Nos.11135012,11520101003 and 11375262)the National High Technology Research and Development Program of China.
文摘Recently generation of strong magnetic(B)fields has been demonstrated in capacitor coils heated by high power laser pulses[S.Fujioka et al.,Sci.Rep.3,1170(2013)].This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography.The radiographs are analyzed with particle-tracing simulations.The B field at the coil center is inferred to be ~50 T at an irradiance of ~5×10^(14) W·cm^(-2).The B field generation is attributed to the background cold electron flow pointing to the laser focal spot,where a target potential is induced due to the escape of energetic electrons.