期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
实践创新能力驱动的化工人才培养模式构建与实施
1
作者 焦纬洲 刘志伟 +3 位作者 张超 袁志国 祁贵生 高璟 《大学化学》 CAS 2024年第7期76-81,共6页
以中北大学“化学工程与工艺”专业为例,构建“学训赛创”四元互促人才培养模式,在扎实的理论教学基础上,融入实验、实习、实训,并结合学科赛事,全面提升学生实践创新能力。实践结果表明,该模式强化了学生对复杂工程问题的处理能力,并... 以中北大学“化学工程与工艺”专业为例,构建“学训赛创”四元互促人才培养模式,在扎实的理论教学基础上,融入实验、实习、实训,并结合学科赛事,全面提升学生实践创新能力。实践结果表明,该模式强化了学生对复杂工程问题的处理能力,并显著提升了师资水平,为行业培养了工程创新人才,展现出良好的示范性和推广价值。 展开更多
关键词 工程实践 人才培养 “学训赛创”模式 四元互促
下载PDF
An integrated technology for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment
2
作者 Kangrui Nie Ruize Shang +3 位作者 Fuming Miao Liuxiang Wang Youzhi Liu weizhou jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期117-125,共9页
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g... In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization. 展开更多
关键词 High-gravity technology Wet absorption CO_(2)capture Enhanced mass transfer CO_(2)utilization Barium carbonate
下载PDF
Photocatalytic ozonation-based degradation of phenol by ZnO—TiO_(2)nanocomposites in spinning disk reactor
3
作者 Xueqing Ren Jiahao Niu +5 位作者 Yan Li Lei Li Chao Zhang Qiang Guo Qiaoling Zhang weizhou jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期74-84,共11页
Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by adva... Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role. 展开更多
关键词 Spinning disk reactor Photocatalytic ozonation ZnO-TiO_(2)nanocomposites Advanced oxidation processes
下载PDF
An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle 被引量:2
4
作者 Chao Zhang Youzhi Liu +3 位作者 weizhou jiao Hongyan Shen Xigang Yuan Shengkun Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期83-88,共6页
In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can b... In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor. 展开更多
关键词 Entropy generation Bubble column reactor OPTIMIZATION BIODEGRADATION Flow field
下载PDF
Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation
5
作者 Kechang Gao Shengjuan Shao +3 位作者 Zhixing Li Jiaxin Jing weizhou jiao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期317-323,共7页
In this study,high-gravity intensified heterogeneous catalytic ozonation is utilized for treatment of phenol-containing wastewater,and the kinetics of the direct reaction between ozone and phenol in the presence of ex... In this study,high-gravity intensified heterogeneous catalytic ozonation is utilized for treatment of phenol-containing wastewater,and the kinetics of the direct reaction between ozone and phenol in the presence of excess tertiary butanol(TBA)is investigated.It is revealed that the direct reaction between ozone and phenol in the rotating packed bed(RPB)follows the pseudo-first-order kinetics with a reaction rate constant higher than that in the conventional bubbling reactor(BR).Under different conditions of temperature,initial pH,high-gravity factor,and gaseous ozone concentration,the apparent reaction rate constant varies in the range of 0.0160–0.115 min-1.An empirical power-exponential model is established to characterize the effects of these parameters on the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation. 展开更多
关键词 High-gravity technique Heterogeneous catalysis OZONE PHENOL Kinetics of the direct reaction
下载PDF
A novel strategy for loading metal cocatalysts onto hollow nano-TiO_(2)inner surface with highly enhanced H_(2)production activity
6
作者 Nan Chen Yu Zhou +2 位作者 Songtao Cao Ruixin Wang weizhou jiao 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期509-518,共10页
The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strateg... The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strategy is based on a pyrolysis process of predesigned N-containing polymers and Pt complexes on hard-template surface,during which Pt can be reduced by carbon from pyrolysis at high temperatures.Finally,the hollow TiO_(2)composite with stable and dispersed Pt on its inner surface was prepared.It shows an ultrahigh photocatalytic H_(2)production activity as high as 25.7 mmol h^(-1)g^(-1)with methanol as sacrificial regent,and displays an apparent quantum yield as 13.2%.The improved photocatalytic activity and stability can be attributed to the highly dispersed and ultrafine Pt nanoparticles,enhanced interaction between Pt-species and carbon support,fast photo-excited electron transport from the high graphitization degree of NC layers,ample oxygen vacancies/defects,as well as the manipulated local charge distribution of Pt/NC-layer configuration.Additionally,the universality of the proposed strategy was demonstrated by replacing metal sources(such as,Ru and Pd).This work presented a promising strategy for the design and development of novel photocatalysts,which shows a broad application prospect. 展开更多
关键词 Ultrathin carbon layer Ultrafine Pt nanoparticles LOADING Hollow photocatalyst Photocatalytic hydrogen production
下载PDF
Applications of high-gravity technologies in gas purifications: A review 被引量:8
7
作者 Jing Guo weizhou jiao +2 位作者 Guisheng Qi Zhiguo Yuan Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1361-1373,共13页
The traditional gas purification techniques such as wet gas desulfurization, with their advantages of large-scale implementation and maturity, have still been widely used. However, the main drawback of these technique... The traditional gas purification techniques such as wet gas desulfurization, with their advantages of large-scale implementation and maturity, have still been widely used. However, the main drawback of these techniques is the low transfer efficiency, which normally needs towers as tall as tens of meters to remove the pollutants. Therefore, new technologies which could enhance the mass transfer efficiency and are less energy-intensive are highly desirable. As a process intensification technology, high-gravity technology, which is carried out in a rotating packed bed(RPB), has recently demonstrated great potential for industrial applications due to its high mass transfer efficiency, energy-saving, and smaller volume. This consequently provides higher efficiency in toxic gas removal, and can significantly reduce the investment and operation costs. In this review, the mechanism,characteristics, recent developments, and the industry applications of high-gravity technologies in gas purifications, such as hydrogen sulfide, nitrogen oxide, carbon dioxide, sulfur dioxide, volatile organic compounds and nanoparticle removal are discussed, most of the demonstration projects and practical application examples in gas purification come from China. The perspective and prospective of this technology in gas purification and other fields are also briefly discussed. 展开更多
关键词 High GRAVITY technology ROTATING packed bed(RPB) Gas PURIFICATION DESULFURIZATION POLLUTION
下载PDF
Degradation and mineralization of aniline by O_3/Fenton process enhanced using high-gravity technology 被引量:7
8
作者 Yuejiao Qin Shuai Luo +2 位作者 Shuo Geng weizhou jiao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第7期1444-1450,共7页
The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared w... The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared with conventional O3/Fenton in a stirred tank reactor (STR-O3/Fenton) or single ozonation in an RPB (RPB-O3), Effects of high gravity factor, H2O2 dosage, H2O2 dosing method and initial pH on the AN mineralization efficiency were investigated in the RPB-O3/Fenton process, In addition, the behavior of Fe(Ⅱ) was monitored at different H2O2 dosing methods and pH values. Finally, the optimal operation conditions were determined with high gravity factor of 100, initial pH of 5, Fe(Ⅱ) concentration of 0.8 mmol·L-1 and H2O2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of I L and concentration of 200 mg· L- 1 ,a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy (LC/MS), and the degradation pathways of AN in RPB-O3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O3/Fenton processes would be promising in the rapid and efficient mineralization ofwastewater. 展开更多
关键词 O3/Fenton process High-gravity technology ANILINE Degradation mechanisms
下载PDF
Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O_(3) in a rotating packed bed 被引量:4
9
作者 weizhou jiao Xingyue Wei +1 位作者 Shengjuan Shao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期133-142,共10页
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overal... This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater. 展开更多
关键词 Rotating packed bed OZONE Heterogeneous catalysis Overall decomposition rate constant Overall volumetric mass transfer coefficient
下载PDF
Numerical simulation and experimental study of the characteristics of packing feature size on liquid flow in a rotating packed bed 被引量:2
10
作者 Xifan Duan Zhiguo Yuan +2 位作者 Youzhi Liu Hangtian Li weizhou jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期22-31,共10页
Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow c... Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper.The particle image velocimetry is compared with the numerical simulations to validate the turbulent model.Results show that the liquid exists in the packing zone in the form of droplet and liquid line,and the cavity is droplet.When the radial thickness of the packing is less than 0.101 m,liquid line and droplets appear in the cavity.When rotational speed and radial thickness of the packing increase,the average diameter of the droplets becomes smaller,and the droplet size distribution becomes uniform.As the initial velocity of the liquid increases,the average droplet diameter increases and the uniformity of particle size distribution become worse.The droplet velocity increases with the radial thickness of the packing increasing,and gradually decreases when it reaches the cavity region.The effect of packing thickness is most substantial through linear fitting.The predicted and simulated values are within±15%.The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution. 展开更多
关键词 Chemical process strengthening equipment Rotating packed bed Computational fluid dynamics Particle image velocimetry Sieve packing
下载PDF
SiO2同步合成与固载酞菁的制备及可见光催化性能 被引量:2
11
作者 党利芳 刘叶峰 +2 位作者 吴晓晓 焦纬洲 王蕊欣 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2020年第3期111-119,共9页
首先通过对羟基苯甲酸和8-羟基喹啉分别与4-硝基邻苯二腈反应制备了羧基苯氧基邻苯二腈(CPPN)和喹啉氧基邻苯二腈(QPN),然后利用开环反应将CPPN键合到聚甲基丙烯酸缩水甘油酯改性的硅胶(PGMA/SiO2)表面,得到键合有邻苯二腈的硅胶CPPN-PG... 首先通过对羟基苯甲酸和8-羟基喹啉分别与4-硝基邻苯二腈反应制备了羧基苯氧基邻苯二腈(CPPN)和喹啉氧基邻苯二腈(QPN),然后利用开环反应将CPPN键合到聚甲基丙烯酸缩水甘油酯改性的硅胶(PGMA/SiO2)表面,得到键合有邻苯二腈的硅胶CPPN-PGMA/SiO2,再通过“同步合成与固载”的方法在PGMA/SiO2表面固载喹啉氧酞菁(QPc)或金属喹啉氧酞菁(MQPc),制备了固载化的酞菁QPc-PGMA/SiO2或CoQPc-PGMA/SiO2。通过红外光谱、扫描电镜、热重分析、紫外-可见漫反射光谱等对其结构、形貌和酞菁键合量进行表征和测定。考察了催化剂DBU用量对“同步合成与固载”酞菁过程的影响。最后以亚甲基蓝(MB)和苯酚为目标降解物,研究所制得的固载化酞菁催化剂QPc-PGMA/SiO2或CoQPc-PGMA/SiO2的可见光催化活性。结果表明,借助“同步合成与固载”的方法能够成功在PGMA/SiO2表面固载喹啉氧酞菁(QPc)或金属喹啉氧酞菁(CoQPc),得到固载化酞菁QPc-PGMA/SiO2或CoQPc-PGMA/SiO2。在可见光照射下,QPc-PGMA/SiO2和CoQPc-PGMA/SiO2均具有较好的光催化活性。较低浓度时,CoQPc-PGMA/SiO2催化降解亚甲基蓝的效果优于QPc-PGMA/SiO2;碱性条件有利于CoQPc-PGMA/SiO2光催化降解MB性能的发挥,在pH值为10.0时,0.2g/L的CoQPc-PGMA/SiO2能使MB的降解率高达97%以上。固载化金属酞菁周边取代基的性质对其光催化降解苯酚有一定的影响,有供电子共轭效应的CoQPc-PGMA/SiO2对苯酚的光降解效果最优,5min内苯酚的降解率达58%,2h内苯酚的降解率高达100%。此外,固载化金属酞菁还具有良好的重复使用性。 展开更多
关键词 酞菁 同步合成与固载 硅胶 聚甲基丙烯酸缩水甘油酯 光催化降解
下载PDF
Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process 被引量:2
12
作者 Jingjuan Qiao weizhou jiao Youzhi Liu 《Green Energy & Environment》 SCIE CSCD 2021年第6期910-919,共10页
As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process w... As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry. 展开更多
关键词 Nanoscale zero valent iron Impinging stream-rotating packed bed Sequential NZVI-Na2S2O8process NITROBENZENE Degradation pathways
下载PDF
Mass transfer characteristics in a rotating packed bed with split packing 被引量:4
13
作者 Youzhi Liu Deyin Gu +2 位作者 Chengcheng Xu Guisheng Qi weizhou jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第5期868-872,共5页
The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteri... The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions. 展开更多
关键词 Rotating packed bed (RPB) Split packing Mass transfer Physical absorption Chemical absorption
下载PDF
Oxidation of benzyl alcohols to ketones and aldehydes by O3 process enhanced using high-gravity technology 被引量:1
14
作者 Wenqiang Gao Lei Du +1 位作者 weizhou jiao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期808-814,共7页
In this study,a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O3)reactor has been developed.Using 1-phenylethanol as a model reactant,the performance of RPB... In this study,a practical process for ozonization of benzyl alcohols to ketones and aldehydes in a rotating packed bed(RPB-O3)reactor has been developed.Using 1-phenylethanol as a model reactant,the performance of RPB-O3 process in different solvents has been compared with the commonly used stirred tank reactor(STR-O3).Ethyl acetate was the optimum solvent for the conversion of 1-phenylenthanol to acetophenone in RPB-O3 process,with 78%yield after 30 min.In a parallel STR-O3 experiment,the yield of acetophenone was50%.Other experimental variables,i.e.O3 concentration,reaction time,high-gravity factor and liquid flow rate were also optimized.The highest yield of acetophenone was obtained using O3 concentration of 80 mg·L-1,reaction time of 30 min,high gravity factor of 40 and liquid flow rate of 120 L·h-1.Under the optimized reaction conditions,a series of structurally diverse primary and secondary alcohols was oxidized with(19%–92%)yield.The ozonization mechanism was studied by Electron Paramagnetic Resonance(EPR)spectroscopy,monitoring the radical species formed upon self-decomposition of O3.The characteristic quadruple peak with the 1:2:2:1 intensity ratio that corresponds to hydroxyl radicals(·OH)was observed in the electron paramagnetic resonance(EPR)spectrum,indicating an indirect oxidation mechanism of alcohols via·OH radical. 展开更多
关键词 OZONE Benzyl alcohols Aldehydes and ketones High-gravity technology
下载PDF
Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packed bed 被引量:1
15
作者 Da Guo Guisheng Qi +3 位作者 Dong Chen Jiabao Niu Youzhi Liu weizhou jiao 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第4期460-469,共10页
Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment.Advanced persulfate oxidation technology is a workab... Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment.Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages.However,NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors.In this study,a rotating packed bed(RPB)was employed as a gas-liquid absorption device to elevate the NO removal efficiency(η_(NO))by aqueous persulfate((NH_(4))_(2)S_(2)O_(8))activated by ferrous ethylenediaminetetraacetate(Fe^(^(2+))-EDTA).The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB.Increasing the concentration of(NH_(4))_(2)S_(2)O_(8) and liquid-gas ratio could promoted the oxidation and absorption of NO while theη_(NO) decreased with the increase of the gas flow and NO concentration.In addition,improving the high gravity factor increased theη_(NO) and the total volumetric mass transfer coefficient(K_(G)α )which raise theη_(NO) up to more than 75%under the investigated system.These observations proved that the RPB can enhance the gas-liquid mass transfer process in NO absorption.The correlation formula between K_(G)α and the influencing factors was determined by regression calculation,which is used to guide the industrial scale-up application of the system in NO removal.The presence of O_(2) also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis,it was revealed that Fe^(2+)-EDTA activated(NH_(4))2S_(2)O_(8) to produce•SO_(4)^(-),•OH and•O_(2)^(-),played a leading role in the oxidation of NO,to produce NO_(3)^(-)as the final product.The obtained results demonstrated a good applicable potential of RPB/PS/Fe^(2+)-EDTA in the removal of NO from flue gases. 展开更多
关键词 rotating packed bed Fe2+-EDTA sulfate radical hydroxyl radical NO removal efficiency
原文传递
A turbulent mass diffusivity model for analyzing the mixing characteristics in an impinging stream-rotating packed bed
16
作者 Chao Zhang Youzhi Liu +4 位作者 weizhou jiao Guisheng Qi Zhiguo Yuan Qiaoling Zhang Hongyan Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 2024年第10期133-143,共11页
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si... In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB. 展开更多
关键词 Impinging stream-rotating packed bed Turbulent mass diffusivity model Computational fluid dynamics Mixing performance Segregation index
下载PDF
超重力环境下O3/Fenton法处理含硝基苯废水 被引量:4
17
作者 杨鹏飞 刘瑛 +1 位作者 焦纬洲 刘有智 《过程工程学报》 CAS CSCD 北大核心 2018年第4期728-734,共7页
在旋转填充床(RPB)中超重力环境下采用O3/Fenton法处理含硝基苯废水,考察了Fenton试剂投加次数、超重力因子β、液体流量、初始pH值、Fe2+投加量、H2O2与Fe2+摩尔比对硝基苯去除率的影响.结果表明,在硝基苯浓度175 mg/L、反应温度2... 在旋转填充床(RPB)中超重力环境下采用O3/Fenton法处理含硝基苯废水,考察了Fenton试剂投加次数、超重力因子β、液体流量、初始pH值、Fe2+投加量、H2O2与Fe2+摩尔比对硝基苯去除率的影响.结果表明,在硝基苯浓度175 mg/L、反应温度25℃、气体流量75 L/h、臭氧浓度40 mg/L、分3次投加Fenton试剂、溶液初始pH值4.5、超重力因子β=80、液体流量140 L/h和Fe2+总投加量1 mmol/L、摩尔比H2O2:Fe2+=5、循环处理40 min的条件下,硝基苯去除率和化学需氧量(COD)去除率分别为99.6%和87.6%.相近条件下,与RPB-Fenton法相比,硝基苯去除率和COD去除率分别提高了36.3%和4.5%,与RPB-O3法相比分别提高了7.2%和47.1%,与BR(鼓泡反应器)-O3/Fenton法相比分别提高了11.3%和47.8%. 展开更多
关键词 旋转填充床 O3/Fenton 硝基苯废水 化学需氧量
原文传递
Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology 被引量:2
18
作者 weizhou jiao Shengjuan Shao +2 位作者 Peizhen Yang Kechang Gao Youzhi Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1197-1205,共9页
This study investigated the indirect oxidation of nitrobenzene(NB)by hydroxyl radicals(·OH)in a rotating packed bed(RPB)using competitive kinetics method with p-nitrochlorobenzene as a reference compound.The rate... This study investigated the indirect oxidation of nitrobenzene(NB)by hydroxyl radicals(·OH)in a rotating packed bed(RPB)using competitive kinetics method with p-nitrochlorobenzene as a reference compound.The rate constants of NB with·OH are calculated to be between(1.465±0.113)×10^(9)L/(mol·s)and(2.497±0.192)×10^(9)L/(mol·s).The experimental data are fitted by the modified Arrhenius equation,where the activation energy is 4877.74 J/mol,the order of NB concentration,rotation speed,and initial pH is 0.2425,0.1400 and 0.0167,respectively.The ozonation process of NB could be enhanced by RPB,which is especially effective for highly concentrated NB-containing waste-water under alkaline conditions.The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more·OH,resulting in an increase in the indirect oxidation rate of NB by·OH and consequently effective degradation of NB in wastewater. 展开更多
关键词 high gravity technology hydroxyl radicals NITROBENZENE reaction kinetics
原文传递
High-gravity intensified iron-carbon micro-electrolysis for degradation of dinitrotoluene 被引量:1
19
作者 Jiaxin Jing weizhou jiao +4 位作者 Zhixing Li Kechang Gao Jingwen Zhang Gaomiao Ren Youzhi Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第11期1595-1605,共11页
The application of iron–carbon(Fe–C)micro-electrolysis to wastewater treatment is limited by the passivation potential of the Fe–C packing.In order to address this problem,high-gravity intensified Fe–C micro-elect... The application of iron–carbon(Fe–C)micro-electrolysis to wastewater treatment is limited by the passivation potential of the Fe–C packing.In order to address this problem,high-gravity intensified Fe–C micro-electrolysis was proposed in this study for degradation of dinitrotoluene wastewater in a rotating packed bed(RPB)using commercial Fe–C particles as the packing.The effects of reaction time,high-gravity factor,liquid flow rate and initial solution pH were investigated.The degradation intermediates were determined by gas chromatography-mass spectrometry,and the possible degradation pathways of nitro compounds by Fe–C micro-electrolysis in RPB were also proposed.It is found that under optimal conditions,the removal rate of nitro compounds reaches 68.4%at 100 min.The removal rate is maintained at approximately 68%after 4 cycles in RPB,but it is decreased substantially from 57.9%to 36.8%in a stirred tank reactor.This is because RPB can increase the specific surface area and the renewal of the liquid–solid interface,and as a result the degradation efficiency of Fe–C micro-electrolysis is improved and the active sites on the Fe–C surface can be regenerated for continuous use.In conclusion,high-gravity intensified Fe–C micro-electrolysis can weaken the passivation of Fe–C particles and extend their service life. 展开更多
关键词 high-gravity technology rotating packed bed Fe–C micro-electrolysis dinitrotoluene wastewater active sites
原文传递
Octane compositions in sulfuric acid catalyzed isobutane/butene alkylation products:experimental and quantum chemistry studies
20
作者 Lina Liang Youzhi Liu +2 位作者 weizhou jiao Qiaoling Zhang Chao Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1229-1242,共14页
Octanes in alkylation products obtained from industrial alkylation were studied by batch experiments.More than eight octane isomers were identified and quantified by gas chromatography-mass spectrometry.Based on a cla... Octanes in alkylation products obtained from industrial alkylation were studied by batch experiments.More than eight octane isomers were identified and quantified by gas chromatography-mass spectrometry.Based on a classic carbenium ion mechanism,the carbocation transition states in concentrated sulfuric acid catalyzed alkylation were investigated using quantum-chemical simulations and predicted the concentration and octane isomerization products including trimethylpentane and dimethylhexane as well as the formation of heavier compounds that resulted from the oligomerization of octane and butene.The agreement between model calculations and experimental data was quite satisfactory.Calculation results indicated that composition and content of trimethylpentanes in the alkylation products were 2,2,4-trimethylpentane>2,3,3-trimethylpentane>2,3,4-trimethylpentane>2,2,3-trimethylpentane whether the 2-butene or i-butene acts as olefin.Heavier compounds in the alkylate were primarily formed by the oligomerization of dimethylhexane with 1-butene.Hopefully,the carbocation transition state models developed in this work will be useful for understanding the product distributions of octane in alkylation products. 展开更多
关键词 sulfuric acid catalyzed alkylation carbocation reaction transition state octane compositions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部