As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
[Objectives] This study was conducted to further investigate the taxonomic status of Hainan population of Trimeresurus stejnegeri from the morphological point of view.[Methods]The difference coefficients between diffe...[Objectives] This study was conducted to further investigate the taxonomic status of Hainan population of Trimeresurus stejnegeri from the morphological point of view.[Methods]The difference coefficients between different populations were compared using the 75% law,and the relationship between scales and latitudes was analyzed.[Results] The scales(abdominal and subcaudal) of 325 Trimeresurus individuals were counted according to China Animal Fauna,including156 T.stejnegeri individuals.Some difference coefficients between the Hainan population and others were greater than 1.28,and there was no correlation between the number of scales and latitude.It conforms to subclassification criteria.[Conclusions]The view about the subspecies status of T.stejnegeri chenbihuii should be supported.展开更多
The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-de...The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.展开更多
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金Supported by Scientific Research Project of Colleges and Universities in Hainan Province(Hnky2017-47)Sanya Special Scientific Research Pilot Project(2016KS05)+2 种基金Provincial Key(Supporting)Discipline for Ordinary Colleges and Universities in Hainan Province:Zoology2018 Special Fund for the Development of Institutions of Higher Learning(phaseⅠ)Provincial Characteristic Discipline:Marine Science。
文摘[Objectives] This study was conducted to further investigate the taxonomic status of Hainan population of Trimeresurus stejnegeri from the morphological point of view.[Methods]The difference coefficients between different populations were compared using the 75% law,and the relationship between scales and latitudes was analyzed.[Results] The scales(abdominal and subcaudal) of 325 Trimeresurus individuals were counted according to China Animal Fauna,including156 T.stejnegeri individuals.Some difference coefficients between the Hainan population and others were greater than 1.28,and there was no correlation between the number of scales and latitude.It conforms to subclassification criteria.[Conclusions]The view about the subspecies status of T.stejnegeri chenbihuii should be supported.
基金supported by the National Key R&D Program of China (2019YFC1712104)the National Natural Science Foundation of China (No. 82104648)the Fundamental Research Funds for the Central Universities (2023-JYB-KYPT-11)
基金the National Natural Science Foundation of China(No.51974215).
文摘The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.