BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Cur...BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Currently,there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects.AIM To investigate the effects of Buqing granule(BQKL)on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments.METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions(PPI),identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,and preliminarily validated the screened core targets by molecular docking.Furthermore,we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection,and administered the appropriate drugs for 12 weeks after the model was successfully induced.Body mass and fasting blood glucose and lipid levels were measured,and pathological changes in retinal tissue were detected by hematoxylin and eosin staining.ELISA was used to detect the oxidative stress index expression in serum and retinal tissue,and immunohistochemistry,real-time quantitative reverse transcription PCR,and western blotting were used to verify the changes in the expression of core targets.RESULTS Six potential therapeutic targets of BQKL for DR treatment,including Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3,were screened using PPI.Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment.Molecular docking prediction indicated that BQKL stably bound to these core targets.In vivo experiments have shown that compared with those in the Control group,rats in the Model group had statistically significant(P<0.05)severe retinal histopathological damage;elevated blood glucose,lipid,and malondialdehyde(MDA)levels;increased Caspase-3,c-Jun,and TP53 protein expression;and reduced superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)levels,ganglion cell number,AKT1,MAPK1,and MAPK3 protein expression.Compared with the Model group,BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids,MDA level,Caspase-3,c-Jun and TP53 proteins were reduced,while the expression of SOD,GSH-Px level,the number of ganglion cells,AKT1,MAPK1,and MAPK3 proteins were elevated.These differences were statistically significant(P<0.05).CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.展开更多
AIM: To investigate whether Helicobacter species (Helicobacter spp.) could be detected in hepatocellular carcinoma (HCC) tissue.METHODS: Liver samples from 28 patients with hepatocellular carcinoma (HCC) diagn...AIM: To investigate whether Helicobacter species (Helicobacter spp.) could be detected in hepatocellular carcinoma (HCC) tissue.METHODS: Liver samples from 28 patients with hepatocellular carcinoma (HCC) diagnosed by histopathology were studied. Twenty-two patients with other liver diseases (5 with liver trauma, 7 with cavernous liver hemangioma, 6 with liver cyst and 4 with hepatolithiasis), 25 patients with gastric cancer, 15 with colonic cancer and 15 with myoma of uterus served as controls. Two piceces of biopsy were obtained from each patient. One was cultured for Helicobacter spp. and extraction of DNA, the other was prepared for scanning electron microscopy (SEM) and in situ hybridization. The samples were cultured on Columbia agar plates with microaerobic techniques. Helicobacter spp. in biopsy from the studied subjects was detected by polymerase chain reaction (PCR) with Helicobacter spp. 16S rRNA primers. Amplified products were identified by Southern hybridization and sequenced further. Besides, other genes (vacA, cagA) specific for Helicobacter pylori (H pylorO were also detected by PCR. Helicobacter spp. in biopsies was observed by SEM. Transmission electron microscopy (TEM) was performed to identify the cultured positive Helicobacter spp. The presence of Helicobacter spp. was detected by in situ hybridization to confirm the type of Helicobacter. RESULTS: The positive rate of He/icobacter cultured in HCC and gastric cancer tissue was 10.7% (3/28) and 24%(6/25), respectively. Helicobacter microorganisms were identified further by typical appearance on Gram staining, positive urease test and characteristic colony morphology on TEM. The bacterium was observed in adjacent hepatocytes of the two HCC samples by SEM.The number of cocci was greater than that of bacilli. The bacterium was also found in four gastric cancer samples. PCR showed that the positive rate of HCC and gastric cancer samples was 60.7% and 72% respectively, while the controls were negative (P〈 0.01). The PCR-amplified products were identified by Southern hybridization and sequenced. The homology to 16S rRNA of H pylon was 97.80%. The samples were verified by in situ hybridization for Helicobacter spp. 16S rRNA-mRNA and proved to be Hpylori positive. There was no statistical significance between HCC and gastric cancer (P〉 0.05), but the positive rate of HCC and controls had statistical significance (P〈0.01). Only 3 HCC samples and 2 gastric cancer samples of the cagA genes were detected. None of the samples reacted with primers for vacA in the two groups. As for the genotype of H pylori, type II had preference over type I. CONCLUSION: Helicobacter infection exists in liver tissues of HCC patients. Helicobacter spp. infection is related with HCC, which needs further research.展开更多
目的分析胎盘间充质干细胞移植对类风湿关节炎大鼠炎症因子及软骨破坏的改善作用。方法将32只SD大鼠随机分为4组,实验组、对照组、模型组及对照组,每组8只。实验组、对照组和模型组为复制类风湿关节炎动物模型,正常组不做任何处理(n=8)...目的分析胎盘间充质干细胞移植对类风湿关节炎大鼠炎症因子及软骨破坏的改善作用。方法将32只SD大鼠随机分为4组,实验组、对照组、模型组及对照组,每组8只。实验组、对照组和模型组为复制类风湿关节炎动物模型,正常组不做任何处理(n=8)。造模后12 h,实验组尾静脉注射胎盘间充质干细胞,对照组注射等量鼠成纤维细胞,模型组不干预。干预3周后,处死所有大鼠,酶联免疫吸附实验与q RT-PCR检测。结果 (1)模型组、对照组与正常组比较,TNF-α、IL-1β及IL-6水平均升高,差异有统计学意义(P<0.05);实验组与模型组及对照组比较,TNF-α、IL-1β及IL-6水平降低,差异有统计学意义(P<0.05);实验组转化生长因子β(TGF-β)水平高于其余各组,差异有统计学意义(P<0.05);(2)模型组、对照组与正常组比较,滑膜组织基质金属蛋白酶1(MMP-1)、基质金属蛋白酶3(MMP-3)及基质金属蛋白酶13(MMP-13)m RNA升高,差异有统计学意义(P<0.05);实验组与对照组及模型组比较,MMP-1、MMP-3及MMP-13m RNA水平降低,差异有统计学意义(P<0.05)。实验组、对照组、模型组与正常组比较,基质金属蛋白酶抑制物3 m RNA降低,差异有统计学意义(P<0.05)。模型组、对照组与正常组比较,钙黏素11 m RNA升高,差异有统计学意义(P<0.05);实验组与模型组、对照组比较,钙黏素11水平降低,差异有统计学意义(P<0.05)。结论胎盘间充质干细胞可能通过抑制TNF-α、IL-1β、IL-6水平及MMP分泌与钙黏素11表达,上调TGF-β水平,来减轻类风湿关节炎大鼠的关节炎症与软骨破坏。展开更多
Activating transcription factor 6(ATF6),one of the three sensor proteins in the endoplasmic reticulum(ER),is an important regulator of ER stress-induced apoptosis.ATF6 resides in the ER and,upon activation,is transloc...Activating transcription factor 6(ATF6),one of the three sensor proteins in the endoplasmic reticulum(ER),is an important regulator of ER stress-induced apoptosis.ATF6 resides in the ER and,upon activation,is translocated to the Golgi apparatus,where it is cleaved by site-1 protease(S1P)to generate an amino-terminal cytoplasmic fragment.Although recent studies have made progress in elucidating the regulatory mechanisms of ATF6,its function during early porcine embryonic development under high-temperature(HT)stress remains unclear.In this study,zygotes were divided into four groups:control,HT,HT+ATF6 knockdown,and HT+PF(S1P inhibitor).Results showed that HT exposure induced ER stress,which increased ATF6 protein expression and led to a decrease in the blastocyst rate.Next,ATF6 expression was knocked down in HT embryos under microinjection of ATF6 double-stranded RNA(dsRNA).Results revealed that ATF6 knockdown(ATF6-KD)attenuated the increased expression of CHOP,an ER stress marker,and Ca2+release induced by HT.In addition,ATF6-KD alleviated homeostasis dysregulation among organelles caused by HT-induced ER stress,and further reduced Golgi apparatus and mitochondrial dysfunction in HT embryos.AIFM2 is an important downstream effector of ATF6.Results showed that ATF6-KD reduced the occurrence of AIFM2-mediated embryonic apoptosis at HT.Taken together,our findings suggest that ATF6 is a crucial mediator of apoptosis during early porcine embryonic development,resulting from HT-induced ER stress and disruption of organelle homeostasis.展开更多
There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,a...There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.展开更多
Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current ...Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current density.Here,it is discovered that Fe-incorporated Ni3S2 nanowires can deliver extraordinary durability with an ultralow potential degradation rate of 0.006 mV/h in alkaline electrolytes made with fresh water and seawater at a benchmark of 500 mA cm^(-2) while meeting the industrial activity requirement for overpotential less than 300 mV(290 mV).Systematic experiments and theoretical simulations suggest that after forming the S-doped NiFeOOH shell to boost intrinsic activity,Fe incorporation effectivelymitigates the reconstruction of the Ni_(3)S_(2) nanowire core by restraining Ni oxidation and S dissolution,justifying the performance.This work highlights the significance of circumventing reconstruction and provides a strategy to explore practical chalcogenides-based OER electrocatalysts.展开更多
Background: The 47,XYY syndrome could result in fertility problems. However, seldom studies reported comprehensive researches on the embryonic development and pregnancy outcomes of these patients. This study aimed to...Background: The 47,XYY syndrome could result in fertility problems. However, seldom studies reported comprehensive researches on the embryonic development and pregnancy outcomes of these patients. This study aimed to evaluate the clinical outcomes of nonmosaic 47,XYY patients performed with fluorescent in situ hybridization (FISH) and preimplantation genetic diagnosis (PGD) treatment. Methods: This was a retrospective study. Between January 2012 and May 2017, 51 infertile males with nonmosaic 47,XYY syndrome underwent FISH-PGD were included in the study. According to sex chromosomal FISH results, embryos were classified as normal signal, no nuclei fixed, no signal in fixed nuclei, suspensive signal, and abnormal signal groups, respectively. The incidence of each group, the fixation rate, and hybridization rate were calculated. Embryonic development and pregnancy outcomes were also analyzed. The measurement data were analyzed with Student's t-test. The comparison of categorical data was analyzed with the Chi-square test and Fisher's exact test when expected cell count was 〈5. Results: The 53 PGD cycles with 433 embryos were analyzed. The fixation rate was 89.6%, while the hybridization rate was 96.4%. There were 283 embryos with two sex chromosomal signals with clear diagnosis (65.4%). The numbers of no nuclei fixed, no signal in fixed nuclei, suspensive signal, and abnormal signal groups were 45 (10.4%), 14 (3.2%), 24 (5.5%), and 67 (15.5%), respectively. Embryos with abnormal signals were abandoned. The number of good-quality embryos was 210 (57.4%), including implanted embryos on day 4/day 5 a.ld cryopreserved. The rates of good-quality embryos in the no nuclei fixed (22.2%), no signal in fixed nuclei (28.6%), and suspensive signal groups (33.3%) were comparable (P 〉 0.05), and were significantly lower than the normal signal group (66.4%, P 〈 0.001 ). The clinical pregnancy rates of fresh and frozen embryos transferred cycles were 70.6% and 85.7%, respectively. Conclusions: Among embryos with a clear diagnosis of sex chromosome, about one-fifth showed abnormal signals. Embryos with two sex chromosomal signals are more likely to develop into good-quality ones. The application of the PGD by FISH may help to improve the clinical outcomes.展开更多
To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combina...To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this "SSR+inducible" conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.展开更多
The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P...The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P-CNTs)is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4μg·h^−1·mg^−1cat.and partial current density of 0.61 mA·cm^−2.Such superior activity is found to be from P doping and highly conjugated CNTs substrate.Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway.These findings provide insightful understanding on NRR processes on P-CNTs,opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.展开更多
Alkaline electrochemical water oxidation powered by renewable energies is a promising and environmentally friendly way to produce hydrogen.The industrial water electrolyzers are commonly operated at a high current den...Alkaline electrochemical water oxidation powered by renewable energies is a promising and environmentally friendly way to produce hydrogen.The industrial water electrolyzers are commonly operated at a high current density,calling for abundant and durable active sites to participate in.The rational design of hierarchically structured electrocatalysts is thus essential to industrial water electrolyzers.Herein,we develop a Fe3+induced nanosizing strategy for fabricating such a hierarchical FeCo LDH@Co3O4(LDH:layered double hydroxide)nanostructure array for high-rate water oxidation.Density functional theory(DFT)simulations indicate that the introduction of Fe3+with a small ion radius and high electrical repulsion in the LDH layer distorted the LDH layer,resulting in a reduced nanosheet size and enabling the formation of a hierarchical structure.Such structure cannot be achieved without the participation of Fe3+cations.Benefiting from the significantly enhanced electrochemical surface areas and charge/mass transport due to the hierarchical structure together with the boosted intrinsic activity by electronic modulation of Fe3+,such FeCo LDH@Co3O4 electrode can deliver an industrial-level current density of 1,000 mA·cm-2 at a small overpotential of 392 mV for water oxidation.When assembled in a water electrolyzer,it delivers a current density of 100 mA·cm-2 at a low operation voltage of 1.61 V.Powered by solar light,the electrolyzer demonstrates high solar-to-hydrogen efficiency of 18.15%with stable and reproducible photoresponse.These results provide new insights for constructing hierarchical nanostructures for advanced water oxidation and other diverse applications.展开更多
Embryonic stem(ES)cells are widely used for different purposes,including gene targeting,cell therapy,tissue repair,organ regeneration,and so on.However,studies and applications of ES cells are hindered by ethical issu...Embryonic stem(ES)cells are widely used for different purposes,including gene targeting,cell therapy,tissue repair,organ regeneration,and so on.However,studies and applications of ES cells are hindered by ethical issues regarding cell sources.To circumvent ethical disputes,great efforts have been taken to generate ES cell-like cells,which are not derived from the inner cell mass of blastocyst-stage embryos.In 2006,Yamanaka et al.first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem(iPS)cells.About one year later,Yamanaka et al.and Thomson et al.independently reprogrammed human somatic cells into iPS cells.Since the first generation of iPS cells,they have now been derived from quite a few different kinds of cell types.In particular,the use of peripheral blood facilitates research on iPS cells because of safety,easy availability,and plenty of cell sources.Now iPS cells have been used for cell therapy,disease modeling,and drug discovery.In this review,we describe the generations,applications,potential issues,and future perspectives of iPS cells.展开更多
Dear Editor, Klinefelter syndrome (KS) is the most frequent genetic cause of infertility in men. Paternity can be achieved through intracytoplasmic sperm injection (ICSI) with spermatozoa recovered from ejaculated...Dear Editor, Klinefelter syndrome (KS) is the most frequent genetic cause of infertility in men. Paternity can be achieved through intracytoplasmic sperm injection (ICSI) with spermatozoa recovered from ejaculated semen if exist, or testes with testicular sperm extraction (TESE).展开更多
Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile stra...Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.展开更多
基金Supported by National Natural Science Foundation of China,No.81960836Ningxia Natural Science Foundation,No.2020AAC03126Ningxia Higher Education Scientific Research Project,No.NGY2020045。
文摘BACKGROUND Diabetic retinopathy(DR)is a common microvascular complication of diabetes mellitus.Its blindness rate is high;therefore,finding a reasonable and safe treatment plan to prevent and control DR is crucial.Currently,there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects.AIM To investigate the effects of Buqing granule(BQKL)on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments.METHODS This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions(PPI),identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,and preliminarily validated the screened core targets by molecular docking.Furthermore,we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection,and administered the appropriate drugs for 12 weeks after the model was successfully induced.Body mass and fasting blood glucose and lipid levels were measured,and pathological changes in retinal tissue were detected by hematoxylin and eosin staining.ELISA was used to detect the oxidative stress index expression in serum and retinal tissue,and immunohistochemistry,real-time quantitative reverse transcription PCR,and western blotting were used to verify the changes in the expression of core targets.RESULTS Six potential therapeutic targets of BQKL for DR treatment,including Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3,were screened using PPI.Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment.Molecular docking prediction indicated that BQKL stably bound to these core targets.In vivo experiments have shown that compared with those in the Control group,rats in the Model group had statistically significant(P<0.05)severe retinal histopathological damage;elevated blood glucose,lipid,and malondialdehyde(MDA)levels;increased Caspase-3,c-Jun,and TP53 protein expression;and reduced superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)levels,ganglion cell number,AKT1,MAPK1,and MAPK3 protein expression.Compared with the Model group,BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids,MDA level,Caspase-3,c-Jun and TP53 proteins were reduced,while the expression of SOD,GSH-Px level,the number of ganglion cells,AKT1,MAPK1,and MAPK3 proteins were elevated.These differences were statistically significant(P<0.05).CONCLUSION BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3,c-Jun,TP53,AKT1,MAPK1,and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.
基金Supported by the Natural Science Foundation of Qingdao, No. 03-2-jz-13
文摘AIM: To investigate whether Helicobacter species (Helicobacter spp.) could be detected in hepatocellular carcinoma (HCC) tissue.METHODS: Liver samples from 28 patients with hepatocellular carcinoma (HCC) diagnosed by histopathology were studied. Twenty-two patients with other liver diseases (5 with liver trauma, 7 with cavernous liver hemangioma, 6 with liver cyst and 4 with hepatolithiasis), 25 patients with gastric cancer, 15 with colonic cancer and 15 with myoma of uterus served as controls. Two piceces of biopsy were obtained from each patient. One was cultured for Helicobacter spp. and extraction of DNA, the other was prepared for scanning electron microscopy (SEM) and in situ hybridization. The samples were cultured on Columbia agar plates with microaerobic techniques. Helicobacter spp. in biopsy from the studied subjects was detected by polymerase chain reaction (PCR) with Helicobacter spp. 16S rRNA primers. Amplified products were identified by Southern hybridization and sequenced further. Besides, other genes (vacA, cagA) specific for Helicobacter pylori (H pylorO were also detected by PCR. Helicobacter spp. in biopsies was observed by SEM. Transmission electron microscopy (TEM) was performed to identify the cultured positive Helicobacter spp. The presence of Helicobacter spp. was detected by in situ hybridization to confirm the type of Helicobacter. RESULTS: The positive rate of He/icobacter cultured in HCC and gastric cancer tissue was 10.7% (3/28) and 24%(6/25), respectively. Helicobacter microorganisms were identified further by typical appearance on Gram staining, positive urease test and characteristic colony morphology on TEM. The bacterium was observed in adjacent hepatocytes of the two HCC samples by SEM.The number of cocci was greater than that of bacilli. The bacterium was also found in four gastric cancer samples. PCR showed that the positive rate of HCC and gastric cancer samples was 60.7% and 72% respectively, while the controls were negative (P〈 0.01). The PCR-amplified products were identified by Southern hybridization and sequenced. The homology to 16S rRNA of H pylon was 97.80%. The samples were verified by in situ hybridization for Helicobacter spp. 16S rRNA-mRNA and proved to be Hpylori positive. There was no statistical significance between HCC and gastric cancer (P〉 0.05), but the positive rate of HCC and controls had statistical significance (P〈0.01). Only 3 HCC samples and 2 gastric cancer samples of the cagA genes were detected. None of the samples reacted with primers for vacA in the two groups. As for the genotype of H pylori, type II had preference over type I. CONCLUSION: Helicobacter infection exists in liver tissues of HCC patients. Helicobacter spp. infection is related with HCC, which needs further research.
文摘目的分析胎盘间充质干细胞移植对类风湿关节炎大鼠炎症因子及软骨破坏的改善作用。方法将32只SD大鼠随机分为4组,实验组、对照组、模型组及对照组,每组8只。实验组、对照组和模型组为复制类风湿关节炎动物模型,正常组不做任何处理(n=8)。造模后12 h,实验组尾静脉注射胎盘间充质干细胞,对照组注射等量鼠成纤维细胞,模型组不干预。干预3周后,处死所有大鼠,酶联免疫吸附实验与q RT-PCR检测。结果 (1)模型组、对照组与正常组比较,TNF-α、IL-1β及IL-6水平均升高,差异有统计学意义(P<0.05);实验组与模型组及对照组比较,TNF-α、IL-1β及IL-6水平降低,差异有统计学意义(P<0.05);实验组转化生长因子β(TGF-β)水平高于其余各组,差异有统计学意义(P<0.05);(2)模型组、对照组与正常组比较,滑膜组织基质金属蛋白酶1(MMP-1)、基质金属蛋白酶3(MMP-3)及基质金属蛋白酶13(MMP-13)m RNA升高,差异有统计学意义(P<0.05);实验组与对照组及模型组比较,MMP-1、MMP-3及MMP-13m RNA水平降低,差异有统计学意义(P<0.05)。实验组、对照组、模型组与正常组比较,基质金属蛋白酶抑制物3 m RNA降低,差异有统计学意义(P<0.05)。模型组、对照组与正常组比较,钙黏素11 m RNA升高,差异有统计学意义(P<0.05);实验组与模型组、对照组比较,钙黏素11水平降低,差异有统计学意义(P<0.05)。结论胎盘间充质干细胞可能通过抑制TNF-α、IL-1β、IL-6水平及MMP分泌与钙黏素11表达,上调TGF-β水平,来减轻类风湿关节炎大鼠的关节炎症与软骨破坏。
基金supported by the National Research Foundation (NRF)of Korea Grant funded by the Korean Government (MSIT) (2020R1A4A1017552,2022R1A2C300769),Republic of Korea。
文摘Activating transcription factor 6(ATF6),one of the three sensor proteins in the endoplasmic reticulum(ER),is an important regulator of ER stress-induced apoptosis.ATF6 resides in the ER and,upon activation,is translocated to the Golgi apparatus,where it is cleaved by site-1 protease(S1P)to generate an amino-terminal cytoplasmic fragment.Although recent studies have made progress in elucidating the regulatory mechanisms of ATF6,its function during early porcine embryonic development under high-temperature(HT)stress remains unclear.In this study,zygotes were divided into four groups:control,HT,HT+ATF6 knockdown,and HT+PF(S1P inhibitor).Results showed that HT exposure induced ER stress,which increased ATF6 protein expression and led to a decrease in the blastocyst rate.Next,ATF6 expression was knocked down in HT embryos under microinjection of ATF6 double-stranded RNA(dsRNA).Results revealed that ATF6 knockdown(ATF6-KD)attenuated the increased expression of CHOP,an ER stress marker,and Ca2+release induced by HT.In addition,ATF6-KD alleviated homeostasis dysregulation among organelles caused by HT-induced ER stress,and further reduced Golgi apparatus and mitochondrial dysfunction in HT embryos.AIFM2 is an important downstream effector of ATF6.Results showed that ATF6-KD reduced the occurrence of AIFM2-mediated embryonic apoptosis at HT.Taken together,our findings suggest that ATF6 is a crucial mediator of apoptosis during early porcine embryonic development,resulting from HT-induced ER stress and disruption of organelle homeostasis.
文摘There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.
基金the National Key Research and Development Program of China(grant no.2021YFA1501002)National Natural Science Foundation of China(grant nos.22025208,22075300,and 21902162)+1 种基金DNL Cooperation Fund,CAS(grant no.DNL202008)Chinese Academy of Sciences,and Australian Research Council(grant no.DE220100746).
文摘Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current density.Here,it is discovered that Fe-incorporated Ni3S2 nanowires can deliver extraordinary durability with an ultralow potential degradation rate of 0.006 mV/h in alkaline electrolytes made with fresh water and seawater at a benchmark of 500 mA cm^(-2) while meeting the industrial activity requirement for overpotential less than 300 mV(290 mV).Systematic experiments and theoretical simulations suggest that after forming the S-doped NiFeOOH shell to boost intrinsic activity,Fe incorporation effectivelymitigates the reconstruction of the Ni_(3)S_(2) nanowire core by restraining Ni oxidation and S dissolution,justifying the performance.This work highlights the significance of circumventing reconstruction and provides a strategy to explore practical chalcogenides-based OER electrocatalysts.
基金This study was supported by grants form Nationl Key Research and Development Program(No.2016YFC1000202),National Natural Science Foundation of China(No.81671522),and Shandong Medical and Health Science and Technology Development Plan (No.2016WS0370).
文摘Background: The 47,XYY syndrome could result in fertility problems. However, seldom studies reported comprehensive researches on the embryonic development and pregnancy outcomes of these patients. This study aimed to evaluate the clinical outcomes of nonmosaic 47,XYY patients performed with fluorescent in situ hybridization (FISH) and preimplantation genetic diagnosis (PGD) treatment. Methods: This was a retrospective study. Between January 2012 and May 2017, 51 infertile males with nonmosaic 47,XYY syndrome underwent FISH-PGD were included in the study. According to sex chromosomal FISH results, embryos were classified as normal signal, no nuclei fixed, no signal in fixed nuclei, suspensive signal, and abnormal signal groups, respectively. The incidence of each group, the fixation rate, and hybridization rate were calculated. Embryonic development and pregnancy outcomes were also analyzed. The measurement data were analyzed with Student's t-test. The comparison of categorical data was analyzed with the Chi-square test and Fisher's exact test when expected cell count was 〈5. Results: The 53 PGD cycles with 433 embryos were analyzed. The fixation rate was 89.6%, while the hybridization rate was 96.4%. There were 283 embryos with two sex chromosomal signals with clear diagnosis (65.4%). The numbers of no nuclei fixed, no signal in fixed nuclei, suspensive signal, and abnormal signal groups were 45 (10.4%), 14 (3.2%), 24 (5.5%), and 67 (15.5%), respectively. Embryos with abnormal signals were abandoned. The number of good-quality embryos was 210 (57.4%), including implanted embryos on day 4/day 5 a.ld cryopreserved. The rates of good-quality embryos in the no nuclei fixed (22.2%), no signal in fixed nuclei (28.6%), and suspensive signal groups (33.3%) were comparable (P 〉 0.05), and were significantly lower than the normal signal group (66.4%, P 〈 0.001 ). The clinical pregnancy rates of fresh and frozen embryos transferred cycles were 70.6% and 85.7%, respectively. Conclusions: Among embryos with a clear diagnosis of sex chromosome, about one-fifth showed abnormal signals. Embryos with two sex chromosomal signals are more likely to develop into good-quality ones. The application of the PGD by FISH may help to improve the clinical outcomes.
基金Project supported by the National Natural Science Foundation of China(Nos.30871436,30973297,and 31171194)the National Basic Research Program(973)of China(No.2010CB945002)+1 种基金the Ministry of Education of China(No.200804220011)Shandong Provincial Science and Technology Key Program(No.2009GG10003039),China
文摘To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, FIp-FRT, and φC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this "SSR+inducible" conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.
基金We acknowledge the financial supports are from the National Key Research and Development Program of China(No.2016YFB0101202)the National Natural Science Foundation of China(Nos.91645123,21773263).
文摘The electrochemical nitrogen reduction reaction(NRR)as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism.Herein,phosphorus-doped carbon nanotube(P-CNTs)is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4μg·h^−1·mg^−1cat.and partial current density of 0.61 mA·cm^−2.Such superior activity is found to be from P doping and highly conjugated CNTs substrate.Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway.These findings provide insightful understanding on NRR processes on P-CNTs,opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.
基金the financial support from the National Natural Science Foundation of China(Nos.22025208,22075300,and 21902162)the China National Postdoctoral Program for Innovative Talents(No.BX2021319)+1 种基金the DNL Cooperation Fund,CAS(No.DNL202008)the Chinese Academy of Sciences.
文摘Alkaline electrochemical water oxidation powered by renewable energies is a promising and environmentally friendly way to produce hydrogen.The industrial water electrolyzers are commonly operated at a high current density,calling for abundant and durable active sites to participate in.The rational design of hierarchically structured electrocatalysts is thus essential to industrial water electrolyzers.Herein,we develop a Fe3+induced nanosizing strategy for fabricating such a hierarchical FeCo LDH@Co3O4(LDH:layered double hydroxide)nanostructure array for high-rate water oxidation.Density functional theory(DFT)simulations indicate that the introduction of Fe3+with a small ion radius and high electrical repulsion in the LDH layer distorted the LDH layer,resulting in a reduced nanosheet size and enabling the formation of a hierarchical structure.Such structure cannot be achieved without the participation of Fe3+cations.Benefiting from the significantly enhanced electrochemical surface areas and charge/mass transport due to the hierarchical structure together with the boosted intrinsic activity by electronic modulation of Fe3+,such FeCo LDH@Co3O4 electrode can deliver an industrial-level current density of 1,000 mA·cm-2 at a small overpotential of 392 mV for water oxidation.When assembled in a water electrolyzer,it delivers a current density of 100 mA·cm-2 at a low operation voltage of 1.61 V.Powered by solar light,the electrolyzer demonstrates high solar-to-hydrogen efficiency of 18.15%with stable and reproducible photoresponse.These results provide new insights for constructing hierarchical nanostructures for advanced water oxidation and other diverse applications.
基金supported by the National Natural Science Foundation of China(Nos.30871436,30973297,31171194,and 31271534)the National Basic Research Program(973)of China(Nos.2010CB945002 and 2014CB541703)+1 种基金the Shandong Provincial Science and Technology Key Program(No.2009GG10003039)the Independent Development Foundation of Shandong University(Nos.2012JC019 and 2012ZD030),China
文摘Embryonic stem(ES)cells are widely used for different purposes,including gene targeting,cell therapy,tissue repair,organ regeneration,and so on.However,studies and applications of ES cells are hindered by ethical issues regarding cell sources.To circumvent ethical disputes,great efforts have been taken to generate ES cell-like cells,which are not derived from the inner cell mass of blastocyst-stage embryos.In 2006,Yamanaka et al.first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem(iPS)cells.About one year later,Yamanaka et al.and Thomson et al.independently reprogrammed human somatic cells into iPS cells.Since the first generation of iPS cells,they have now been derived from quite a few different kinds of cell types.In particular,the use of peripheral blood facilitates research on iPS cells because of safety,easy availability,and plenty of cell sources.Now iPS cells have been used for cell therapy,disease modeling,and drug discovery.In this review,we describe the generations,applications,potential issues,and future perspectives of iPS cells.
文摘Dear Editor, Klinefelter syndrome (KS) is the most frequent genetic cause of infertility in men. Paternity can be achieved through intracytoplasmic sperm injection (ICSI) with spermatozoa recovered from ejaculated semen if exist, or testes with testicular sperm extraction (TESE).
基金supported by the National Natural Science Foundation of China (21573249, 51732004)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12020100)
文摘Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.