Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in I...Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in ICU patients.Lung injury is a common organ damage observed in sepsis patients.Macrophages and Th17 cells,as crucial components of innate and adaptive immunity,play pivotal roles in the development of sepsis-induced acute lung injury(ALI).This review summarizes the alterations and mechanisms of macrophages and Th17 cells in sepsis-induced ALI.By focusing on the“cross-talk”between macrophages and Th17 cells,this review aims to provide a solid theoretical foundation for further exploring the therapeutic targets of traditional Chinese medicine formulas in the treatment of sepsis complicated with ALI,thereby offering insights and guidance for the clinical application of traditional Chinese medicine in managing sepsis-associated ALI.展开更多
Background:Sepsis-induced coagulopathy and multiple organ dysfunction syndromes are the leading causes of death in patients with sepsis.Qingwen Baidu decoction(QWBD)can effectively improve the clinical manifestations ...Background:Sepsis-induced coagulopathy and multiple organ dysfunction syndromes are the leading causes of death in patients with sepsis.Qingwen Baidu decoction(QWBD)can effectively improve the clinical manifestations of sepsis and ease inflammation,but its effects on coagulation functions and multiple organ injuries remain unclear.Methods:100 healthy,male Sprague-Dawley rats were randomly divided into the sham group,the cecal ligation and puncture(CLP)group,the low-dose QWBD group,and the high-dose QWBD group,with 25 rats in each group.The sepsis model was established using CLP.Blood was collected to measure platelet count,serum creatinine(Cr),blood urea nitrogen(BUN),alanine aminotransferase(ALT),and aspartate aminotransferase(AST)levels,as well as coagulation function.The total protein in bronchoalveolar lavage fluid(BALF)was determined in each group of rats.The lung,liver,and kidney tissues were harvested,and statistics were calculated on the wet-to-dry(W/D)weight ratio.Changes in histopathology and thrombin level were evaluated in each group.The remaining ten rats in each group were observed daily to record the number of surviving rats.Such observation was made consecutively for 7 days to calculate survival rates.Results:After model establishment,ALT,AST,Cr,and BUN levels were significantly elevated(P<0.01).The BALF protein content and lung W/D weight ratio were significantly increased(P<0.01).Furthermore,the survival rate of rats was significantly reduced in the CLP group compared with the sham group.After the treatment,rats in the high-dose QWBD group had lower ALT(P<0.05),AST(P<0.01),Cr(P<0.05),BUN(P<0.01)levels,lower BALF protein content(P<0.05)and lower lung W/D weight ratio(P<0.01)than the CLP group.However,rats in the high-dose QWBD group had significantly better pathological changes in the lung,liver,and kidney compared to the sham group.After the treatment,the platelet level in the peripheral blood was elevated(P<0.05)and both activated partial thromboplastin time and prothrombin time were significantly shortened(P<0.01).The fibrinogen level was significantly increased(P<0.01).Finally,thrombin positive expression areas in the lung,liver,and kidney were significantly decreased in the high-dose QWBD group.Conclusion:QWBD can improve coagulation disorders caused by sepsis and has a protective effect on multiple organ injuries in rats.展开更多
基金supported by the National Natural Science Foundation of China(No.82104581,No.82060864).
文摘Sepsis is a life-threatening multiple organ dysfunction syndrome caused by the imbalance of the immune response to infection,featuring complex and variable conditions,and is one of the leading causes of mortality in ICU patients.Lung injury is a common organ damage observed in sepsis patients.Macrophages and Th17 cells,as crucial components of innate and adaptive immunity,play pivotal roles in the development of sepsis-induced acute lung injury(ALI).This review summarizes the alterations and mechanisms of macrophages and Th17 cells in sepsis-induced ALI.By focusing on the“cross-talk”between macrophages and Th17 cells,this review aims to provide a solid theoretical foundation for further exploring the therapeutic targets of traditional Chinese medicine formulas in the treatment of sepsis complicated with ALI,thereby offering insights and guidance for the clinical application of traditional Chinese medicine in managing sepsis-associated ALI.
基金supported by the National Key R&D Program of China(No.2018YFC1706500Nos.81973800)+3 种基金the Tianjin Scientific Research Project of Priority Area of Traditional Chinese Medicine(No.20170062022007)the Oncology Translational Medicine Seed Fund Project of Tianjin Medical University Cancer Hospital(No.1910)the Chunmiao Project of Tianjin First Center Hospital(No.2019CM15).
文摘Background:Sepsis-induced coagulopathy and multiple organ dysfunction syndromes are the leading causes of death in patients with sepsis.Qingwen Baidu decoction(QWBD)can effectively improve the clinical manifestations of sepsis and ease inflammation,but its effects on coagulation functions and multiple organ injuries remain unclear.Methods:100 healthy,male Sprague-Dawley rats were randomly divided into the sham group,the cecal ligation and puncture(CLP)group,the low-dose QWBD group,and the high-dose QWBD group,with 25 rats in each group.The sepsis model was established using CLP.Blood was collected to measure platelet count,serum creatinine(Cr),blood urea nitrogen(BUN),alanine aminotransferase(ALT),and aspartate aminotransferase(AST)levels,as well as coagulation function.The total protein in bronchoalveolar lavage fluid(BALF)was determined in each group of rats.The lung,liver,and kidney tissues were harvested,and statistics were calculated on the wet-to-dry(W/D)weight ratio.Changes in histopathology and thrombin level were evaluated in each group.The remaining ten rats in each group were observed daily to record the number of surviving rats.Such observation was made consecutively for 7 days to calculate survival rates.Results:After model establishment,ALT,AST,Cr,and BUN levels were significantly elevated(P<0.01).The BALF protein content and lung W/D weight ratio were significantly increased(P<0.01).Furthermore,the survival rate of rats was significantly reduced in the CLP group compared with the sham group.After the treatment,rats in the high-dose QWBD group had lower ALT(P<0.05),AST(P<0.01),Cr(P<0.05),BUN(P<0.01)levels,lower BALF protein content(P<0.05)and lower lung W/D weight ratio(P<0.01)than the CLP group.However,rats in the high-dose QWBD group had significantly better pathological changes in the lung,liver,and kidney compared to the sham group.After the treatment,the platelet level in the peripheral blood was elevated(P<0.05)and both activated partial thromboplastin time and prothrombin time were significantly shortened(P<0.01).The fibrinogen level was significantly increased(P<0.01).Finally,thrombin positive expression areas in the lung,liver,and kidney were significantly decreased in the high-dose QWBD group.Conclusion:QWBD can improve coagulation disorders caused by sepsis and has a protective effect on multiple organ injuries in rats.