In this editorial,we offer commentary on the article published by Chen et al in a recent issue of the World Journal of Gastroenterology(2024;30:1346-1357).The study highlights a noteworthy association between persiste...In this editorial,we offer commentary on the article published by Chen et al in a recent issue of the World Journal of Gastroenterology(2024;30:1346-1357).The study highlights a noteworthy association between persistently elevated,yet highnormal levels of alanine transaminase(ALT)and an escalated cumulative risk of developing metabolic dysfunction-associated fatty liver disease(MAFLD).MAFLD has emerged as a globally prevalent chronic liver condition,whose incidence is steadily rising in parallel with improvements in living standards.Left unchecked,MAFLD can progress from hepatic steatosis to liver fibrosis,cirrhosis,and even hepatocellular carcinoma,underscoring the importance of early screening and diagnosis.ALT is widely recognized as a reliable biomarker for assessing the extent of hepatocellular damage.While ALT levels demonstrate a significant correlation with the severity of fatty liver disease,they lack specificity.The article by Chen et al contributes to our understanding of the development of MAFLD by investigating the long-term implications of high-normal ALT levels.Their findings suggest that sustained elevation within the normal range is linked to an increased likelihood of developing MAFLD,emphasizing the need for closer monitoring and potential intervention in such cases.展开更多
(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel t...(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel technique,and its transmission characteristics for photocatalysis were tested.The results show that the lattice constant,filling ratio,number of periodic layers,and incident angle had effects on the band gap.When the lattice constant,filling ratio,number of periodic layers,and incident angle were set to 125 nm,0.45,21,and 0°,respectively,a gap width of 53 nm appeared at the central wavelength(322 nm).The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap.A slow photon effect region above 96%reflectivity appeared.The degradation rate of tetracycline in(GO/TiO2)N photonic crystal was enhanced to 64%within 60 min.Meanwhile,the degradation efficiency of(GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.展开更多
Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health.In this study,inorganic aluminosilicate coatings prepared by combining metakaolin,silica f...Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health.In this study,inorganic aluminosilicate coatings prepared by combining metakaolin,silica fume,NaOH,and H_(2)O were applied to the surfaces of wood-based panels to obstruct formaldehyde release.The Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings.Results showed that the cracks in the coatings gradually disappeared and the formaldehyde resistance rates of the barrier increased as the Si/Al molar ratio was increased from 1.6 to 2.2.This value also increased as the Na/Al molar ratio was increased from 0.9 to 1.2 because of the improvement of the degree of polymerization.As the H_(2)O/Na_(2)O molar ratio was increased from 12 to 15,the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde resistance rate.When the Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios were 2.2,1.2,and 12,respectively,the inorganic aluminosilicate coating showed good performance as a formaldehyde-resistant barrier and its formaldehyde resistance rate could reach up to 83.2%.展开更多
Background: Nowadays, it is widely known that decremental responses in low-frequency repetitive nerve stimulation (LF-RNS) are frequently observed in patients with amyotrophic lateral sclerosis (ALS). The patholo...Background: Nowadays, it is widely known that decremental responses in low-frequency repetitive nerve stimulation (LF-RNS) are frequently observed in patients with amyotrophic lateral sclerosis (ALS). The pathological mechanism of this phenomenon remains unknown. This study aimed to illuminate the features of RNS in Chinese patients with ALS. Methods: Clinical and electrophysiological data of 146 probable and definite ALS patients who underwent RNS were retrospectively enrolled and analyzed. LF-RNS (3 Hz) was performed in trapezius, deltoid, abductor digiti minimi (ADM), quadriceps femoris, and tibialis anterior. High-frequency RNS (HF-RNS, 10 Hz) was performed only in ADM. The two-sample t-test and Chi-squared test were used for statistical analysis.Results: Decremental responses to LF-RNS (≥ 10%) in at least one muscle were detected in 83 (56.8%) of the cases and were most commonly seen in trapezius and deltoid. The incidence ofdecremental response was higher in patients with upper limb onset. Incremental responses to HF-RNS (≥60%) in ADM were observed in 6 (5.6%) of the cases. In 106 muscles with decremental response, 62 (57.4%) muscles had a continuous decremental pattern, more than a U-shape pattern (37 cases, 34.3%). Nineteen cases showed definite decrements in LF-RNS tests in trapezius, while no abnormalities were found in the electromyography and neurological examination of the sternocleidomastoid muscle, supplied by the accessory nerve as well.Conclusions: Decremental responses in the RNS are commonly observed in ALS patients. The findings regarding the trapezius indicated that some ALS onsets could be initiated by a "dying back" process, with destruction of neuromuscular junctions (NMJs) before motor neurons. Incremental responses in the ADM implied damage of the NMJs involved both the post and presynaptic membranes.展开更多
Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force betwe...Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force between the hosts and polysulfides,restricting the cyclic stability of sulfur electrode.Meantime,the presence of binder and conductive agent in the traditional electrode reduces its energy density.This study demonstrates that titanium nitride(TiN)nanorod array on carbon cloth(CC)is employed as a flexible host for highly stable Li-S batteries via solvothermal synthesis-nitridation strategy.On the one hand,the flexible integrated network composed of three-dimensional TiN nanorod array and CC significantly improves the conductivity,increases the electron transport and electrolyte penetration of cathode.On the other hand,the 3D structure of TiN/CC and the enhanced polarity of TiN effectively strengthen the physical and chemical double adsorption for polysulfides.As a result,the combination of TiN nanorod array and CC synergistic ally promotes sulfur utilization and electrochemical performances of S@TiN/CC cathode.A discharge capacity of1015.2 mAh·g^(-1)at 0.5C after 250 cycles and 604.1mAh·g^(-1)at 3C after 250 cycles is realized.Under a larger current density of 5C,the resulting S@TiN/CC cathode maintains a high discharge capacity of 666.6 mAh·g^(-1)and the Coulombic efficiency of about 100%.展开更多
基金Supported by the Natural Science Foundation of Sichuan Province,No.24NSFSC0163State Key Clinical Department of Oral&Maxillofacial Surgery。
文摘In this editorial,we offer commentary on the article published by Chen et al in a recent issue of the World Journal of Gastroenterology(2024;30:1346-1357).The study highlights a noteworthy association between persistently elevated,yet highnormal levels of alanine transaminase(ALT)and an escalated cumulative risk of developing metabolic dysfunction-associated fatty liver disease(MAFLD).MAFLD has emerged as a globally prevalent chronic liver condition,whose incidence is steadily rising in parallel with improvements in living standards.Left unchecked,MAFLD can progress from hepatic steatosis to liver fibrosis,cirrhosis,and even hepatocellular carcinoma,underscoring the importance of early screening and diagnosis.ALT is widely recognized as a reliable biomarker for assessing the extent of hepatocellular damage.While ALT levels demonstrate a significant correlation with the severity of fatty liver disease,they lack specificity.The article by Chen et al contributes to our understanding of the development of MAFLD by investigating the long-term implications of high-normal ALT levels.Their findings suggest that sustained elevation within the normal range is linked to an increased likelihood of developing MAFLD,emphasizing the need for closer monitoring and potential intervention in such cases.
基金the National Key R&D Program of China(No.2016YFC0700904)。
文摘(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel technique,and its transmission characteristics for photocatalysis were tested.The results show that the lattice constant,filling ratio,number of periodic layers,and incident angle had effects on the band gap.When the lattice constant,filling ratio,number of periodic layers,and incident angle were set to 125 nm,0.45,21,and 0°,respectively,a gap width of 53 nm appeared at the central wavelength(322 nm).The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap.A slow photon effect region above 96%reflectivity appeared.The degradation rate of tetracycline in(GO/TiO2)N photonic crystal was enhanced to 64%within 60 min.Meanwhile,the degradation efficiency of(GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.
基金financially supported by the National Key Research and Development Program of China(Nos.2016 YFC0700607,2017YFB0304305,and 2016YFC0700901)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-20-006A3).
文摘Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health.In this study,inorganic aluminosilicate coatings prepared by combining metakaolin,silica fume,NaOH,and H_(2)O were applied to the surfaces of wood-based panels to obstruct formaldehyde release.The Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings.Results showed that the cracks in the coatings gradually disappeared and the formaldehyde resistance rates of the barrier increased as the Si/Al molar ratio was increased from 1.6 to 2.2.This value also increased as the Na/Al molar ratio was increased from 0.9 to 1.2 because of the improvement of the degree of polymerization.As the H_(2)O/Na_(2)O molar ratio was increased from 12 to 15,the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde resistance rate.When the Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios were 2.2,1.2,and 12,respectively,the inorganic aluminosilicate coating showed good performance as a formaldehyde-resistant barrier and its formaldehyde resistance rate could reach up to 83.2%.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81671278 and No. 81601096), One Hundred Advantage Projects "Fund of Chinese PLA General Hospital" (No. YS201415), and Key Research and Development Plan of Hainan Province (No. ZDFY2016120).
文摘Background: Nowadays, it is widely known that decremental responses in low-frequency repetitive nerve stimulation (LF-RNS) are frequently observed in patients with amyotrophic lateral sclerosis (ALS). The pathological mechanism of this phenomenon remains unknown. This study aimed to illuminate the features of RNS in Chinese patients with ALS. Methods: Clinical and electrophysiological data of 146 probable and definite ALS patients who underwent RNS were retrospectively enrolled and analyzed. LF-RNS (3 Hz) was performed in trapezius, deltoid, abductor digiti minimi (ADM), quadriceps femoris, and tibialis anterior. High-frequency RNS (HF-RNS, 10 Hz) was performed only in ADM. The two-sample t-test and Chi-squared test were used for statistical analysis.Results: Decremental responses to LF-RNS (≥ 10%) in at least one muscle were detected in 83 (56.8%) of the cases and were most commonly seen in trapezius and deltoid. The incidence ofdecremental response was higher in patients with upper limb onset. Incremental responses to HF-RNS (≥60%) in ADM were observed in 6 (5.6%) of the cases. In 106 muscles with decremental response, 62 (57.4%) muscles had a continuous decremental pattern, more than a U-shape pattern (37 cases, 34.3%). Nineteen cases showed definite decrements in LF-RNS tests in trapezius, while no abnormalities were found in the electromyography and neurological examination of the sternocleidomastoid muscle, supplied by the accessory nerve as well.Conclusions: Decremental responses in the RNS are commonly observed in ALS patients. The findings regarding the trapezius indicated that some ALS onsets could be initiated by a "dying back" process, with destruction of neuromuscular junctions (NMJs) before motor neurons. Incremental responses in the ADM implied damage of the NMJs involved both the post and presynaptic membranes.
基金financially supported by the National Natural Science Foundation of China (Nos.22179064,91963119,21805140,51772157,21905141,22203046 and62174087)China Postdoctoral Science Foundation (No.2018M642287)+2 种基金Jiangsu Province Postdoctoral Research Grant Program (No.2018K156C)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)the Synergetic Innovation Center for Organic Electronics and Information Displays。
文摘Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force between the hosts and polysulfides,restricting the cyclic stability of sulfur electrode.Meantime,the presence of binder and conductive agent in the traditional electrode reduces its energy density.This study demonstrates that titanium nitride(TiN)nanorod array on carbon cloth(CC)is employed as a flexible host for highly stable Li-S batteries via solvothermal synthesis-nitridation strategy.On the one hand,the flexible integrated network composed of three-dimensional TiN nanorod array and CC significantly improves the conductivity,increases the electron transport and electrolyte penetration of cathode.On the other hand,the 3D structure of TiN/CC and the enhanced polarity of TiN effectively strengthen the physical and chemical double adsorption for polysulfides.As a result,the combination of TiN nanorod array and CC synergistic ally promotes sulfur utilization and electrochemical performances of S@TiN/CC cathode.A discharge capacity of1015.2 mAh·g^(-1)at 0.5C after 250 cycles and 604.1mAh·g^(-1)at 3C after 250 cycles is realized.Under a larger current density of 5C,the resulting S@TiN/CC cathode maintains a high discharge capacity of 666.6 mAh·g^(-1)and the Coulombic efficiency of about 100%.