A combination method of optimization of the back-ground value and optimization of the initial item is proposed. The sequences of the unbiased exponential distribution are simulated and predicted through the optimizati...A combination method of optimization of the back-ground value and optimization of the initial item is proposed. The sequences of the unbiased exponential distribution are simulated and predicted through the optimization of the background value in grey differential equations. The principle of the new information priority in the grey system theory and the rationality of the initial item in the original GM(1,1) model are ful y expressed through the improvement of the initial item in the proposed time response function. A numerical example is employed to il ustrate that the proposed method is able to simulate and predict sequences of raw data with the unbiased exponential distribution and has better simulation performance and prediction precision than the original GM(1,1) model relatively.展开更多
The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theore...The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.展开更多
B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere a...B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550-650℃(denoted as BN-Ana_x,BN-Bro_x,and BN-Rut_x,x is the treatment temperature).The colors of as-prepared BN-Ana,BN-Bro,and BN-Rut are red,yellow-green,and cyangreen,respectively.The color changing mechanism of titania was related to their various band gap structure and the existence of B-N bonding.The nitridation temperature exhibits effective color changing compared to that of nitridation time.The different phases of the mixed anion codoped titania possess different photocatalytic deNO_(x) activity.The BN-Ana and BN-Rut show poor photocatalytic deNO_(x) activity,while the BN-Bro shows excellent photocatalytic deNO_(x) activity,better than that of standard titania photocatalyst Degussa P25.The colorful titania with low-photocatalytic activity is heavy metal elements free,indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.展开更多
Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix comp...Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.展开更多
1.Foreword In light of the rapid depletion of fossil energy resources and the escalating environmental pollution crisis,there has been a significant surge in research focused on the development of technologies and mat...1.Foreword In light of the rapid depletion of fossil energy resources and the escalating environmental pollution crisis,there has been a significant surge in research focused on the development of technologies and materials for renewable energy conversion,utilization,and storage.This research area has gained paramount importance in addressing the pressing challenges of our time.展开更多
A novel process, which was based on powder injection molding, was investigated for the fabrication of ceramic photonic bandgap structure with three-dimensional diamond lattice. The SiO2-TiO2 ceramic powder was mixed w...A novel process, which was based on powder injection molding, was investigated for the fabrication of ceramic photonic bandgap structure with three-dimensional diamond lattice. The SiO2-TiO2 ceramic powder was mixed with a water-soluble agent to produce slurry. The slurry was then injected into an epoxy mold with inverse diamond lattice, fabricated by the stereolitographic rapid prototyping process. To increase the density of the green compact, cold isostatic pressing was applied on the unit. Using thermal debinding, the water-soluble agent and the epoxy were extracted at 360 and 650 K, respectively. Sintering was immediately done at 950 K for 5 h and the desired three-dimensional ceramic structure was obtained. The calculated band diagram for this structure indicated the existence of an absolute photonic bandgap for all wave vectors. At 14.7-18.5 GHz, a complete band gap was located with a maximum attenuation of 30 dB at 17 GHz, when transmission was measured in the 〈100〉 direction between 10 and 20 GHz.展开更多
In the treatment of central nervous system disease,the blood-brain barrier(BBB)is a major obstruction to drug delivery that must be overcome.In this study,we propose a brain-targeted delivery strat-egy based on select...In the treatment of central nervous system disease,the blood-brain barrier(BBB)is a major obstruction to drug delivery that must be overcome.In this study,we propose a brain-targeted delivery strat-egy based on selective opening of the BBB.This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material;however,the BBB still maintains the ability to completely block molecules from passing through.Based on the screening of BBB opening and matrix delivery mate-rials,we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine li-posomes can efficiently carry drugs into the brain immediately.At an effective dose,this delivery system is safe,especially with its effect on the BBB being reversible.This mix&act delivery system has a simple structure and rapid preparation,making it a strong potential candidate for drug delivery across the BBB.展开更多
In the transient process of power grid faults,the transferring distortion of current transformer(CT)can seriously affect relay protection performance.Under these conditions,it is difficult to analyze the ferromagnetic...In the transient process of power grid faults,the transferring distortion of current transformer(CT)can seriously affect relay protection performance.Under these conditions,it is difficult to analyze the ferromagnetic characteristic of the magnetizing branch in the transient equivalent circuit of CT.The Jiles-Atherton hysteresis model(J-A model),which is widely used in digital simulations,can accurately describe the hysteresis and saturation process of the core characteristics;however,to acquire the parameters of the J-A model of current transformers in practical use is still a challenging problem.In this paper,physical tests based on a practical CT and parameter identification are presented to solve the problem.The basic hysteresis loops of P,PR,and TPY class of practical current transformers are obtained through physical tests.Thus,the J-A model parameters are identified using a hybrid genetic/simulated annealing algorithm,based on which transient simulation models of different class CTs are constructed.The effectiveness of the proposed method is verified via dynamic physical simulation tests.A typical accident is analyzed based on these models.展开更多
In this work,various backbone binders were used in wax-based binder system to formulate zirconia parts by ceramic injection molding (CIM).The effect of different backbone binders on the molding,debinding,and sintering...In this work,various backbone binders were used in wax-based binder system to formulate zirconia parts by ceramic injection molding (CIM).The effect of different backbone binders on the molding,debinding,and sintering behaviors was investigated.After blending process,the feedstock using multi-polymer components exhibited more homogeneous structure compared with that using the mono-polymer ones due to the synergistic effect of multi-polymers.During solvent debinding,some defects such as 'slumping' and 'peeling' appeared in the parts containing ethylene-vinyl acetate copolymer (EVA),but they were not found in the parts with other thermal polymers.Also,as for the parts after sintering,the one using low density polyethylene (LDPE) and high density polyethylene (HDPE) as backbone binders presented a more uniform microstructure with finer zirconia grains among all the investigated compositions,and thus obtained the highest flexural strength (~949 MPa) and relative density (~98.9%).展开更多
Developing high-performance electrocatalysts for CO_(2) reduction reaction(CO_(2)RR)is crucial since it is beneficial for environmental protection and the resulting value-add chemical products can act as an alternativ...Developing high-performance electrocatalysts for CO_(2) reduction reaction(CO_(2)RR)is crucial since it is beneficial for environmental protection and the resulting value-add chemical products can act as an alternative to fossil feedstocks.Nonetheless,the direct reduction of CO_(2) into long-chain hydrocarbons and oxygenated hydrocarbons with high selectivity remains challenging.Copper(Cu)shows a distinctive advantage that it is the only pure metal catalyst for reducing CO_(2) into multi-carbon(C_(2+))products and the certain facets(e.g.,(100),(111),(111))of Cu nanocrystals exhibit relatively low energy barriers for the formation of specific products(e.g.,CO,HCOOH,CH_(4),C_(2)H_(4),C_(2)H_(5)OH,and other C_(2+) products).Therefore,extensive studies have been carried out to explore the relationship between the facets of Cu nanocrystals and corresponding catalytic products.In this review,we will discuss the crystal facet-dependent electrocatalytic CO_(2)RR performance in metallic Cu catalysts,meanwhile,the detailed reaction mechanisms will be systematically summarized.In addition,we will provide a personal perspective for the future research directions in this emerging field.We believe this review is helpful to guide the design of high-selectivity Cu-based electrocatalysts for CO_(2)RR.展开更多
The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the...The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the development of the technology of the wide area relaying protection(WARP),which has become a research hotspot that attracts extensive attention.Originated from the basic concept of the wide area relaying protection,this paper analyses the advantages,the effects and the functions of the wide area relaying protection.The two main approaches to realize the wide area protection,which are on-line adaptive setting(OAS)principle and fault element identification(FEI),are introduced in this paper.Aimed at improving the performance of the backup protection,the research content and the technology demand of the wide area protection are proposed,meanwhile,the basic principle and the algorithm of the fault element identification are introduced.At last,the scheme of the limited wide area relaying protection based on the existing pilot channel of the main protection is discussed.展开更多
The rapid miniaturization and high integration of modern electronic devices have brought an increasing demand for polymer-based thermal management materials with higher thermal conductivity.Boron nitride nanosheets(BN...The rapid miniaturization and high integration of modern electronic devices have brought an increasing demand for polymer-based thermal management materials with higher thermal conductivity.Boron nitride nanosheets(BNNs)have been widely used as thermally conductive fillers benefiting from the extremely high intrinsic thermal conductivity.However,the small lateral size and weak interface bonding of BNNs enabled them to only form thermally conductive networks through physical overlap,resulting in high interfacial thermal resistance.To address this issue,an innovative strategy based on interface engineering was proposed in this study.High-aspect-ratio boron nitride belts(BNbs)were successfully synthesized by carbon thermal reduction nitridation method through the in-situ generation and sintering of BNNs.The surface of BNb showed the sintering of numerous smaller-sized BNNs,which precisely addresses the issue of weak interfacial bonding between BNNs.On this basis,the as-synthesized BNbs were combined with nano-fibrillated cellulose(NFC)to prepare NFC/BNb composite films through a facile vacuum filtration process.Due to the thermally conductive network formed by the horizontal oriented arrangement of BNb and their particular morphological advantages,the NFC/BNb films demonstrated significantly higher in-plane thermal conductivity than that of NFC/BNNs films,achieving the highest value of 19.119 W·m^(−1)·K^(−1) at a 20 wt%filling fraction.In addition,the NFC/BNb films also exhibited superior thermal stability,mechanical strength,flexibility,and electrical insulation performance,suggesting the significant application potential of the designed BNb fillers in the thermal management field.展开更多
基金supported by the Key Project of National Social Science Foundation(12AZD111)the National Project for Education Science Planning(EFA110351)+2 种基金the Humanities and Social Science Foundation of Ministry of Education of China(12YJCZH207)the Key Project for Jiangsu Province Social Science Foundation(12DDA011)the Jiangsu College of Humanities and Social Sciences outside Campus Research Base:Chinese Development of Strategic Research Base for Internet of Things
文摘A combination method of optimization of the back-ground value and optimization of the initial item is proposed. The sequences of the unbiased exponential distribution are simulated and predicted through the optimization of the background value in grey differential equations. The principle of the new information priority in the grey system theory and the rationality of the initial item in the original GM(1,1) model are ful y expressed through the improvement of the initial item in the proposed time response function. A numerical example is employed to il ustrate that the proposed method is able to simulate and predict sequences of raw data with the unbiased exponential distribution and has better simulation performance and prediction precision than the original GM(1,1) model relatively.
基金supported by the BJAST High-level Innovation Team Program (No.BGS202001)the Beijing Postdoctoral Research Foundation (No.2022-ZZ-046)+3 种基金the National Natural and Science Foundation of China (No.51972026)the Japan Society for the Promotion of Science (JSPS)Grant-in-Aid for the Scientific Research (KAKENHI,Nos.16H06439 and 20H00297)the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices.”the scholarship granted to a visiting Ph.D.student of the Inter-University Exchange Project by the China Scholarship Council (CSC,No.201906460113)。
文摘The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.
基金supported by the KOSéCosmetology Research Foundationthe Japan Society funded the present work for the Promotion of Science (JSPS)Grant-in-Aid for Scientific Research (Nos.16H06439 and 20H00297)。
文摘B and N mixed anions co-doped titania with various crystal phases such as anatase,brookite,and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550-650℃(denoted as BN-Ana_x,BN-Bro_x,and BN-Rut_x,x is the treatment temperature).The colors of as-prepared BN-Ana,BN-Bro,and BN-Rut are red,yellow-green,and cyangreen,respectively.The color changing mechanism of titania was related to their various band gap structure and the existence of B-N bonding.The nitridation temperature exhibits effective color changing compared to that of nitridation time.The different phases of the mixed anion codoped titania possess different photocatalytic deNO_(x) activity.The BN-Ana and BN-Rut show poor photocatalytic deNO_(x) activity,while the BN-Bro shows excellent photocatalytic deNO_(x) activity,better than that of standard titania photocatalyst Degussa P25.The colorful titania with low-photocatalytic activity is heavy metal elements free,indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.
基金financially supported by the National Natural Science Foundation of China (Nos.51702011 and 51572018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-20-006A3)the Scientific Research Project of Hunan Province Department of Education,China (No.20B323)。
文摘Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.
文摘1.Foreword In light of the rapid depletion of fossil energy resources and the escalating environmental pollution crisis,there has been a significant surge in research focused on the development of technologies and materials for renewable energy conversion,utilization,and storage.This research area has gained paramount importance in addressing the pressing challenges of our time.
基金This work was financially supported by the Major State Basic Research Development Program of China (No.2004CB719802).
文摘A novel process, which was based on powder injection molding, was investigated for the fabrication of ceramic photonic bandgap structure with three-dimensional diamond lattice. The SiO2-TiO2 ceramic powder was mixed with a water-soluble agent to produce slurry. The slurry was then injected into an epoxy mold with inverse diamond lattice, fabricated by the stereolitographic rapid prototyping process. To increase the density of the green compact, cold isostatic pressing was applied on the unit. Using thermal debinding, the water-soluble agent and the epoxy were extracted at 360 and 650 K, respectively. Sintering was immediately done at 950 K for 5 h and the desired three-dimensional ceramic structure was obtained. The calculated band diagram for this structure indicated the existence of an absolute photonic bandgap for all wave vectors. At 14.7-18.5 GHz, a complete band gap was located with a maximum attenuation of 30 dB at 17 GHz, when transmission was measured in the 〈100〉 direction between 10 and 20 GHz.
文摘In the treatment of central nervous system disease,the blood-brain barrier(BBB)is a major obstruction to drug delivery that must be overcome.In this study,we propose a brain-targeted delivery strat-egy based on selective opening of the BBB.This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material;however,the BBB still maintains the ability to completely block molecules from passing through.Based on the screening of BBB opening and matrix delivery mate-rials,we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine li-posomes can efficiently carry drugs into the brain immediately.At an effective dose,this delivery system is safe,especially with its effect on the BBB being reversible.This mix&act delivery system has a simple structure and rapid preparation,making it a strong potential candidate for drug delivery across the BBB.
基金supported by the Key project of smart grid technology and equipment of national key research and development plan of China under Grant 2016YFB0900600。
文摘In the transient process of power grid faults,the transferring distortion of current transformer(CT)can seriously affect relay protection performance.Under these conditions,it is difficult to analyze the ferromagnetic characteristic of the magnetizing branch in the transient equivalent circuit of CT.The Jiles-Atherton hysteresis model(J-A model),which is widely used in digital simulations,can accurately describe the hysteresis and saturation process of the core characteristics;however,to acquire the parameters of the J-A model of current transformers in practical use is still a challenging problem.In this paper,physical tests based on a practical CT and parameter identification are presented to solve the problem.The basic hysteresis loops of P,PR,and TPY class of practical current transformers are obtained through physical tests.Thus,the J-A model parameters are identified using a hybrid genetic/simulated annealing algorithm,based on which transient simulation models of different class CTs are constructed.The effectiveness of the proposed method is verified via dynamic physical simulation tests.A typical accident is analyzed based on these models.
基金This work was financially supported by National Natural Science Foundation of China
文摘In this work,various backbone binders were used in wax-based binder system to formulate zirconia parts by ceramic injection molding (CIM).The effect of different backbone binders on the molding,debinding,and sintering behaviors was investigated.After blending process,the feedstock using multi-polymer components exhibited more homogeneous structure compared with that using the mono-polymer ones due to the synergistic effect of multi-polymers.During solvent debinding,some defects such as 'slumping' and 'peeling' appeared in the parts containing ethylene-vinyl acetate copolymer (EVA),but they were not found in the parts with other thermal polymers.Also,as for the parts after sintering,the one using low density polyethylene (LDPE) and high density polyethylene (HDPE) as backbone binders presented a more uniform microstructure with finer zirconia grains among all the investigated compositions,and thus obtained the highest flexural strength (~949 MPa) and relative density (~98.9%).
基金financially supported by the National Natural Science Foundation of China(No.92061119)the Beijing NOVA program(No.Z201100006820066)the Fundamental Research Funds for the Central Universities(No.FRF-DF-20-03,No.06500113,No.06500119)。
文摘Developing high-performance electrocatalysts for CO_(2) reduction reaction(CO_(2)RR)is crucial since it is beneficial for environmental protection and the resulting value-add chemical products can act as an alternative to fossil feedstocks.Nonetheless,the direct reduction of CO_(2) into long-chain hydrocarbons and oxygenated hydrocarbons with high selectivity remains challenging.Copper(Cu)shows a distinctive advantage that it is the only pure metal catalyst for reducing CO_(2) into multi-carbon(C_(2+))products and the certain facets(e.g.,(100),(111),(111))of Cu nanocrystals exhibit relatively low energy barriers for the formation of specific products(e.g.,CO,HCOOH,CH_(4),C_(2)H_(4),C_(2)H_(5)OH,and other C_(2+) products).Therefore,extensive studies have been carried out to explore the relationship between the facets of Cu nanocrystals and corresponding catalytic products.In this review,we will discuss the crystal facet-dependent electrocatalytic CO_(2)RR performance in metallic Cu catalysts,meanwhile,the detailed reaction mechanisms will be systematically summarized.In addition,we will provide a personal perspective for the future research directions in this emerging field.We believe this review is helpful to guide the design of high-selectivity Cu-based electrocatalysts for CO_(2)RR.
基金supported by National Natural Science Foundation of China Science Foundation of China(No.50377031 and No.50837002).
文摘The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the development of the technology of the wide area relaying protection(WARP),which has become a research hotspot that attracts extensive attention.Originated from the basic concept of the wide area relaying protection,this paper analyses the advantages,the effects and the functions of the wide area relaying protection.The two main approaches to realize the wide area protection,which are on-line adaptive setting(OAS)principle and fault element identification(FEI),are introduced in this paper.Aimed at improving the performance of the backup protection,the research content and the technology demand of the wide area protection are proposed,meanwhile,the basic principle and the algorithm of the fault element identification are introduced.At last,the scheme of the limited wide area relaying protection based on the existing pilot channel of the main protection is discussed.
基金This work was supported by the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-22-022).
文摘The rapid miniaturization and high integration of modern electronic devices have brought an increasing demand for polymer-based thermal management materials with higher thermal conductivity.Boron nitride nanosheets(BNNs)have been widely used as thermally conductive fillers benefiting from the extremely high intrinsic thermal conductivity.However,the small lateral size and weak interface bonding of BNNs enabled them to only form thermally conductive networks through physical overlap,resulting in high interfacial thermal resistance.To address this issue,an innovative strategy based on interface engineering was proposed in this study.High-aspect-ratio boron nitride belts(BNbs)were successfully synthesized by carbon thermal reduction nitridation method through the in-situ generation and sintering of BNNs.The surface of BNb showed the sintering of numerous smaller-sized BNNs,which precisely addresses the issue of weak interfacial bonding between BNNs.On this basis,the as-synthesized BNbs were combined with nano-fibrillated cellulose(NFC)to prepare NFC/BNb composite films through a facile vacuum filtration process.Due to the thermally conductive network formed by the horizontal oriented arrangement of BNb and their particular morphological advantages,the NFC/BNb films demonstrated significantly higher in-plane thermal conductivity than that of NFC/BNNs films,achieving the highest value of 19.119 W·m^(−1)·K^(−1) at a 20 wt%filling fraction.In addition,the NFC/BNb films also exhibited superior thermal stability,mechanical strength,flexibility,and electrical insulation performance,suggesting the significant application potential of the designed BNb fillers in the thermal management field.