Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu...Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.展开更多
Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium si...Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium silicates during the first cycle.In this work,we modify SiO_(x) by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent.We show that Mg reduces SiO_(2) in SiO_(x) to Si and forms MgSiO_(3) or Mg_(2)SiO_(4).The MgSiO_(3) or Mg_(2)SiO_(4) are mainly distributed on the surface of SiO_(x),which suppresses the irreversible lithium-ion loss and enhances the ICE of SiO_(x).However,the formation of MgSiO_(3) or Mg_(2)SiO_(4) also sacrifices the capacity of SiO_(x).Therefore,by controlling the reaction process between Mg and SiO_(x),we can tune the phase composition,proportion,and morphology of the Mg-doped SiO_(x) and manipulate the performance.We obtain samples with a capacity of 1226 mAh g^(–1) and an ICE of 84.12%,which show significant improvement over carbon-coated SiO_(x) without Mg doping.By the synergistical modification of both Mg doping and prelithiation,the capacity of SiO_(x) is further increased to 1477 mAh g^(–1) with a minimal compromise in the ICE(83.77%).展开更多
Alkali metal-carbon dioxide(Li/Na/K-CO_(2))batteries are emerging electrochemical energy storage technologies in the context of the energy crisis and the urgent demand for carbon neutrality.Alkali metal-CO_(2) batteri...Alkali metal-carbon dioxide(Li/Na/K-CO_(2))batteries are emerging electrochemical energy storage technologies in the context of the energy crisis and the urgent demand for carbon neutrality.Alkali metal-CO_(2) batteries offer a new strategy for CO_(2) fixation and utilization,and thus has been receiving considerable attention in recent years.Considerable progress has been achieved since alkali metal-CO_(2) batteries were invented,especially in terms of development of new electrode materials,and yet,research is lacking on the underlying mechanisms of the systems.This is the first typical review focusing on the electrochemical mechanisms of metal-CO_(2) batteries that summarizes the current understanding of and provides insights into the thermodynamic reaction pathways,the kinetic characteristics,and the crucial factors determining the reaction mechanisms in alkali metal-CO_(2) batteries.The review starts with the fundamental concepts of alkali metal-CO_(2) batteries,followed by a comprehensive discussion of the working mechanisms on cathodes and anodes.Moreover,the operation mechanisms of state-of-the-art electrolytes,including liquid and(quasi-)solid-state electrolytes,are also described.Finally,we identify the unsolved problems in current alkali metal-CO_(2) batteries and propose potential topics for future research.展开更多
Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morph...Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.展开更多
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ...Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.展开更多
Nanomaterials based on nickel foam(NF) have been widely applied in energy conversion and storage field.Traditional synthesis methods such as hydrothermal method which is dangerous and high cost limited the scalable de...Nanomaterials based on nickel foam(NF) have been widely applied in energy conversion and storage field.Traditional synthesis methods such as hydrothermal method which is dangerous and high cost limited the scalable developments.Herein,we report a fast,simple,and low-cost synthesis method of nanomaterials based on NF by Joule-heating and water soaking treatment.Thin carbon-coated CoS on NF(NF-C/CoS) was synthesized by Joule-heating for a few seconds with rapid cooling.And then,NF-C/CoS/NiOOH with core-shell heterostructure was fabricated by soaking treatment of NF-C/CoS in water on which NiOOH nanosheets grew spontaneously.The formation mechanism is proposed that the coordination complex precursor converts into C/CoS on NF driven by Joule-heating,and the nickel on the surface of NF is activated to form metastable nickel simultaneously.The metastable nickel reacting with water leads to the formation of NiOOH,and the induction of CoS makes NiOOH grow continuously.This synthesis technology provides a new route to manufacture NF-based nanostructures,and the as-fabricated NF-C/CoS/NiOOH exhibits great potential as electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction.展开更多
A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable...A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable electronic devices.Herein,we report a flexible and stretchable metal-coated textile prepared by a dynamic stretching–electroplating based on a wavy spandex textile substrate.Benefiting from the unique woven and wavy structure,the metal-coated textile shows a high stretchability of 100%and stable conductivity.In situ scanning electron microscope observation during stretching showed that the tensile strain of the metal-coated textile is mainly attributed to the deformation of the microfiber network at the bottom position of the wave structure.In addition,a sodium carboxymethyl cellulose–polyacrylic acid–potassium hydroxide composite hydrogel has been used as the electrolyte.This hydrogel shows excellent ionic conductivity,mechanical properties,and water retention properties,which makes it suitable for the semi-open system of ZAB.Furthermore,a flexible and stretchable sandwich-structure ZAB,assembled using the above-mentioned electrodes and electrolyte,operates stably even under rapid stretching/releasing cycle deformation.Because of its facile preparation and low cost,this flexible and stretchable ZAB is suitable for fabrication of large-area batteries to obtain higher output current and power to drive wearable electronic devices.展开更多
Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode dev...Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode development.Herein we construct an aqueous zinc ion capacitor possessing an unrivaled combination of high energy and power characteristics by employing a unique dual-ion adsorption mechanism in the cathode side.Through a templating/activating co-assisted carbonization procedure,a routine protein-rich biomass transforms into defect-rich carbon with immense surface area of 3657.5 m^(2) g^(-1) and electrochemically active heteroatom content of 8.0 at%.Comprehensive characterization and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations and anions,which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/charge.The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g^(-1) and retention of72 mAh g^(-1) at ultrahigh current density of 100 A g^(-1)(400 C),corresponding to the outstanding energy and power of 168 Wh kg^(-1)and 61,700 W kg^(-1).Furthermore,practical battery configurations of solid-state pouch and cable-type cells display excellent reliability in electrochemistry as flexible and knittable power sources.展开更多
Stainless steel(SS)is one of the most widely used engineering materials in marine engineering.However,its corrosion in the marine atmospheric environment due to the high concentration of Cl-is a problem.The SS corrosi...Stainless steel(SS)is one of the most widely used engineering materials in marine engineering.However,its corrosion in the marine atmospheric environment due to the high concentration of Cl-is a problem.The SS corrosion is a threat to the development and security of marine industry;therefore,evaluating the corrosion resistance of SSs is necessary.In this work,atmospheric corrosion detection probes based on a symmetrical electrode system were used to study the corrosion behaviors of 304 SS and 2205 duplex stainless steel(DSS)in a simulated marine atmosphere.A theoretical model for electrochemical noise(EN)data analysis based on the Thevenin electrochemical equivalent circuit(EEC)model was established.The relationship between the EN characteristic parameters and the corrosion rate was obtained.The Thevenin EEC model analysis showed that the relationship between the noise resistance(Rn),the noise impedance[Rsn(f)],and the impedance modulus(|Z(f)|)was Rn≈Rsn=■.Thus,Rn and Rsn can be used as indicators for quantitative corrosion evaluation.The results of EN detection for the 304 SS and 2205 DSS showed that in a simulated marine atmospheric environment,the passive fi lms on the two SSs were relatively intact at the initial exposure stage,and their dissolution rates were slow.The corrosion resistance of the 2205 DSS was higher than that of the 304 SS.With the deposition of Cl-on the SS surface,pitting was initiated and the dissolution rate increased.The pitting initiation process on the SS surface was random,and part of the active pores could be repassivated.展开更多
Rechargeable zinc-air batteries(ZABs)have attracted much attention as the next-generation energy conversion and storage devices due to the abundance and environmental friendliness of zinc(Zn)for anode materials,as wel...Rechargeable zinc-air batteries(ZABs)have attracted much attention as the next-generation energy conversion and storage devices due to the abundance and environmental friendliness of zinc(Zn)for anode materials,as well as the safety and low cost of aqueous electrolytes.However,rational design of nonprecious and low-cost integrated air cathode materials with a desirable bifunctional oxygen electrocatalytic performance remains a great challenge for the commercialization of rechargeable ZABs.In previous research studies,various cost-effective carbon-supported electrocatalysts and light-weight carbon-based current collectors for air cathodes have been developed,showing vast potential in the application of carbon-based materials.To improve the bifunctional performance and integration of air cathodes,efforts with respect to the design of morphology,defects,and synergistic effects of carbon-based materials have been made.In this perspective,the general understanding of the air cathode construction and the battery working mechanism is discussed.The recent progress in the design of carbon-based materials for air cathodes in rechargeable ZABs is summarized.Several possible future research directions and the expected development trends are also discussed,aiming to facilitate the commercialization of advanced rechargeable ZABs in our life.展开更多
The purpose of this work was to enhance the corrosion resistance of the passive fi lm on 304 stainless steel(SS)by chemical modifi cation in alkaline phosphate–molybdate solutions.The 304 SS was passivated in both ph...The purpose of this work was to enhance the corrosion resistance of the passive fi lm on 304 stainless steel(SS)by chemical modifi cation in alkaline phosphate–molybdate solutions.The 304 SS was passivated in both phosphate and phosphate–molybdate mixed solutions to investigate the eff ect of molybdate on its corrosion resistance.The experimental results indicated that the passive fi lm showed better corrosion resistance in Cl?-containing solutions after modifi cation in phosphate–molybdate solutions than in phosphate-only solutions.Energy-dispersive spectroscopy analyses revealed that the passive fi lm formed in phosphate–molybdate solutions contained Mo and P after modifi cation,which is the reason for the enhanced corrosion resistance.展开更多
The translation and implementation of clinical practice guidelines(CPGs)for Traditional Chinese Medicine(TCM)and Integrated Traditional Chinese and Western medicine is crucial to the adoption of medical science and te...The translation and implementation of clinical practice guidelines(CPGs)for Traditional Chinese Medicine(TCM)and Integrated Traditional Chinese and Western medicine is crucial to the adoption of medical science and technology,but the low operability and slow update of integrated traditional Chinese and Western Medicine guidelines,and the lack of integration between guidelines and clinical practice,result in the guidelines not having the desired clinical effects in practice.The application of Artificial Intelligence(AI)to the field of CPGs development aims to shorten the development time,optimize and accelerate the whole process of CPG’s development.This article summarized the current research and application status of AI in development and implementation CPGs for TCM and Integrated Traditional Chinese and Western medicine and proposed the method of Combining real world data and AI technology to enrich for TCM and Integrated Traditional Chinese and Western medicine.展开更多
Lung cancer poses a serious threat to human life with high incidence and miRNA is an important biomarkerin tumors. This study aimed to explore the effect of miR-143-3p on the biological function of lung cancer cells a...Lung cancer poses a serious threat to human life with high incidence and miRNA is an important biomarkerin tumors. This study aimed to explore the effect of miR-143-3p on the biological function of lung cancer cells and theunderlying mechanism. Eighty-seven samples of lung cancer tissues and 81 samples of tumor-adjacent tissues from patients undergoing radical lung cancer surgery in our hospital were collected. The lung cancer cells and lung fibroblastcells (HFL-1) were purchased, and then miR-143-3p-mimics, miR-NC, si-CTNND1, and NC were transfected into A549 and PC-9 cells to establish cell models. MiR-143-3p and CTNND1 expression levels were measured by the qRT-PCR, Bax, Bcl-2, and CTNND1 expression levels by the Western Blot (WB), and cell proliferation, invasion, and apoptosis by the MTT assay, Transwell assay, and flow cytometry. Dual luciferase report assay was used to determinethe relationship between miR-143-3p and CTNND1. In this study, miR-143-3p was lowly expressed in lung cancer and CTNND1 was highly expressed in lung cancer. The overexpression of miR-143-3p inhibited cell proliferation and invasion, promoted cell apoptosis, significantly increased Bax protein expression, and decreased Bcl-2 protein expression. The inhibition of CTNND1 led to opposite biological characteristic in cells. The dual luciferase reporter assay demonstrated that miR-143-3p was a target region of CTNND1. Such results suggest that miR-143-3p can inhibitthe proliferation and invasion of lung cancer cells by regulating the expression of CTNND1 and promote the apoptosisof lung cancer cells, sott is expected to be a potential target for lung cancer.展开更多
One-port magnetic surface acoustic wave(MSAW) resonators are fabricated by stacking multilayered(FeCoSiB/SiO2)n films directly on top of interdigital electrodes. It is shown that the magneto-acoustic response of the M...One-port magnetic surface acoustic wave(MSAW) resonators are fabricated by stacking multilayered(FeCoSiB/SiO2)n films directly on top of interdigital electrodes. It is shown that the magneto-acoustic response of the MSAW resonators critically depends the hysteresis of △E effect. For the magnetic multilayer without induced magnetic anisotropy, the resonance frequency( fR) exhibits a butterfly-like dependence on the external field, therefore, enabling bipolar detection of magnetic field smaller than its coercive field. However, for the magnetic multilayers with induced magnetic anisotropy, butterfly-like or loop-like fR–H curves are measured along the interdigtial electrode fingers or the SAW propagation direction, which can be attributed to the competition between the magnetic field-induced anisotropy and the stress-induced or shape anisotropy.展开更多
Spinel LiNi_(0.5-x)Mn_(1.5+x)O_(4)(LNMO)has attracted intensive interest for lithium-ion battery due to its high voltage and high energy density.However,severe capacity fade attributed to unstable surface structure ha...Spinel LiNi_(0.5-x)Mn_(1.5+x)O_(4)(LNMO)has attracted intensive interest for lithium-ion battery due to its high voltage and high energy density.However,severe capacity fade attributed to unstable surface structure has hampered its commercialization.Oxygen vacancies(OVs)tend to occur in the surface of the material and lead to surface structure reconstruction,which deteriorates the battery performance during electrochemical cycling.Here,we utilize high-temperature-shock(HTS)method to synthesize LNMO materials with fewer surface OVs.Rapid calcination drives lower surface OVs concentration,reducing the content of Mn^(3+)and surface reconstruction layers,which is beneficial to obtain a stable crystal structure.The LNMO material synthesized by HTS method delivers an initial capacity of 127 mAh·g^(-1) at 0.1 C and capacity retention of 81.6%after 300 cycles at 1 C,and exhibits excellent performance at low temperature.展开更多
Synthesizing bimetallic nanomaterials,with noble metals as the surface layers and inert metals as the substrates,has been proven to be an effective way to reduce the use of noble metals with maintained catalytic activ...Synthesizing bimetallic nanomaterials,with noble metals as the surface layers and inert metals as the substrates,has been proven to be an effective way to reduce the use of noble metals with maintained catalytic activity.However,an atomic diffusion from the inert substrate to the surface during the long-term operation has been reported to significantly decrease the activity.In this work,a series of catalysis-inert Cu-coated Ni foil were fabricated through electrodeposition and their activities for alkaline hydrogen evolution were investigated.Notably,the Ni/Cu-60 sample showed a similar catalytic property with pure Ni foil and only a slight decrease in HER activity was observed.The X-ray photoelectron spectroscopy(XPS)results indicated a decreased electron concentration of Cu in Ni/Cu-60,and theoretical calculations further demonstrated the electron transfer between the Ni substrate and Cu layer.Our results reveal that a specific composition or structure of an inert metal layer might not significantly decrease the electrocatalytic activity of active metals.Moreover,there are more possibilities for the rational design of metal-based catalysts for electrocatalysis.展开更多
The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty pro...The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.展开更多
Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO_(2) electroreduction reaction(CO_(2)RR).In_(2)O_(3) is well-known for its specific abilit...Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO_(2) electroreduction reaction(CO_(2)RR).In_(2)O_(3) is well-known for its specific ability to produce formic acid.However,how the crystal phase and surface affect the CO_(2)RR activity is still unclear,making it difficult to further improve the intrinsic activity and screen for the most active structure.In this work,cubic and hexagonal In_(2)O_(3) with different stable surfaces((111)and(110)for cubic,(120)and(104)for hexagonal)are investigated for CO_(2)RR.Theoretical results demonstrate that the adsorption of reactants on cubic In_(2)O_(3) is stronger than that on hexagonal In_(2)O_(3),with the cubic(111)surface being the most active for CO_(2)RR.In experiments,synthesized cubic In_(2)O_(3) nanosheets with predominantly exposed(111)surfaces exhibited a high HCOO^(-)Faradaic efficiency(87.5%)and HCOO^(–)current density(–16.7 mA cm^(-2))at–0.9 V vs RHE.In addition,an aqueous Zn-CO_(2) battery based on a cubic In2O3 cathode was assembled.Our work correlates the phases and surfaces with the CO_(2)RR activity,and provides a fundamental understanding of the structure-function relationship of In_(2)O_(3),thereby contributing to further improvements in its CO_(2)RR activity.Moreover,the results provide a principle for the directional preparation of materials with optimal phases and surfaces for efficient electrocatalysis.展开更多
Saline water electrolysis is an appealing strategy for hydrogen production,attracting more attention in recent years.NiFe-based electrodes exhibit promise as catalysts for saline water electrolysis.Nevertheless,they s...Saline water electrolysis is an appealing strategy for hydrogen production,attracting more attention in recent years.NiFe-based electrodes exhibit promise as catalysts for saline water electrolysis.Nevertheless,they suffer from the inferior service life of the oxygen evolution reaction(OER).Herein,we report an oxygen-evolution electrode consisting of a sulfate-modulated nickel-iron hydroxide(NiFeOOH)affording as the catalytic active layer and Fe-Ni_(3)S_(2) as the corrosion-proof layer.The developed electrode only requires overpotentials of 220 and 292 mV to deliver the current density of 10 and 500 mA·cm^(−2),respectively.More importantly,it presents long-term stability exceeding 140 and 100 h in 1 M KOH at high current densities of 500 and 1000 mA·cm^(−2),respectively,as well as 120 h for saline water electrolysis at 100 mA·cm^(−2).Experimental results reveal that the generated sulfate plays an indispensable role in improving stability and corrosion resistance.We assembled and tested an anion exchange membrane electrolyzer with Pt/C and NiFeS/NIF as the cathode and anode,respectively,under industrial conditions.This overall water-splitting electrolyzer achieves an impressive energy conversion efficiency of 75%±0.5%.This report offers fresh insights into the design of stable NiFe-based electrodes,which may further promote its practical applications for saline water electrolysis.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant Nos.92372107 and 52171219).
文摘Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.
基金supported by the National Natural Science Foundation(52232009)the National Natural Science Foundation for Distinguished Young Scholar(52125404)+1 种基金the National Youth Talent Support Program,“131”First Level Innovative Talents Training Project in Tianjinthe Tianjin Natural Science Foundation for Distinguished Young Scholar(18JCJQJC46500).
文摘Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium silicates during the first cycle.In this work,we modify SiO_(x) by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent.We show that Mg reduces SiO_(2) in SiO_(x) to Si and forms MgSiO_(3) or Mg_(2)SiO_(4).The MgSiO_(3) or Mg_(2)SiO_(4) are mainly distributed on the surface of SiO_(x),which suppresses the irreversible lithium-ion loss and enhances the ICE of SiO_(x).However,the formation of MgSiO_(3) or Mg_(2)SiO_(4) also sacrifices the capacity of SiO_(x).Therefore,by controlling the reaction process between Mg and SiO_(x),we can tune the phase composition,proportion,and morphology of the Mg-doped SiO_(x) and manipulate the performance.We obtain samples with a capacity of 1226 mAh g^(–1) and an ICE of 84.12%,which show significant improvement over carbon-coated SiO_(x) without Mg doping.By the synergistical modification of both Mg doping and prelithiation,the capacity of SiO_(x) is further increased to 1477 mAh g^(–1) with a minimal compromise in the ICE(83.77%).
基金support from the National Natural Science Foundation of China (52072257)the National Key Research and Development Program of China (2019YFE0118800).
文摘Alkali metal-carbon dioxide(Li/Na/K-CO_(2))batteries are emerging electrochemical energy storage technologies in the context of the energy crisis and the urgent demand for carbon neutrality.Alkali metal-CO_(2) batteries offer a new strategy for CO_(2) fixation and utilization,and thus has been receiving considerable attention in recent years.Considerable progress has been achieved since alkali metal-CO_(2) batteries were invented,especially in terms of development of new electrode materials,and yet,research is lacking on the underlying mechanisms of the systems.This is the first typical review focusing on the electrochemical mechanisms of metal-CO_(2) batteries that summarizes the current understanding of and provides insights into the thermodynamic reaction pathways,the kinetic characteristics,and the crucial factors determining the reaction mechanisms in alkali metal-CO_(2) batteries.The review starts with the fundamental concepts of alkali metal-CO_(2) batteries,followed by a comprehensive discussion of the working mechanisms on cathodes and anodes.Moreover,the operation mechanisms of state-of-the-art electrolytes,including liquid and(quasi-)solid-state electrolytes,are also described.Finally,we identify the unsolved problems in current alkali metal-CO_(2) batteries and propose potential topics for future research.
基金supported by Chongqing Newcent New Materials Co.,Ltd.,China (No.2021GKF-0708).
文摘Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method.The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hy-drothermal process was investigated.Except for ethylene glycol/water solvent,impurity-free barium titanate was synthesized in pure water,methanol/water,ethanol/water,and isopropyl alcohol/water mixed solvents.Compared with other alcohols,ethanol promotes the formation of a tetragonal structure.In addition,characterization studies confirm that particles synthesized in methanol/water,ethanol/water,and isopropyl al-cohol/water mixed solvents are smaller in size than those synthesized in pure water.In the case of alcohol-containing solvents,the particle size decreases in the order of isopropanol,ethanol,and methanol.Among all the media used in this study,ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality(defined as the ratio of two lattice parameters c and a,c/a=1.0088)and small aver-age particle size(82 nm),which indicates its great application potential in multilayer ceramic capacitors.
文摘Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.
基金supported by the National Natural Science Foundation of China (Nos. 91963113, 51701139, and U1601216)。
文摘Nanomaterials based on nickel foam(NF) have been widely applied in energy conversion and storage field.Traditional synthesis methods such as hydrothermal method which is dangerous and high cost limited the scalable developments.Herein,we report a fast,simple,and low-cost synthesis method of nanomaterials based on NF by Joule-heating and water soaking treatment.Thin carbon-coated CoS on NF(NF-C/CoS) was synthesized by Joule-heating for a few seconds with rapid cooling.And then,NF-C/CoS/NiOOH with core-shell heterostructure was fabricated by soaking treatment of NF-C/CoS in water on which NiOOH nanosheets grew spontaneously.The formation mechanism is proposed that the coordination complex precursor converts into C/CoS on NF driven by Joule-heating,and the nickel on the surface of NF is activated to form metastable nickel simultaneously.The metastable nickel reacting with water leads to the formation of NiOOH,and the induction of CoS makes NiOOH grow continuously.This synthesis technology provides a new route to manufacture NF-based nanostructures,and the as-fabricated NF-C/CoS/NiOOH exhibits great potential as electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction.
基金National Natural Science Foundation of China and Guangdong Province,Grant/Award Number:U1601216National Natural Science Foundation for Excellent Young Scholar,Grant/Award Number:51722403+3 种基金National Youth Talent Support Program“131”First Level Innovative Talents Training Project in TianjinNational Natural Science Foundation for Distinguished Young Scholar,Grant/Award Number:52125404Tianjin Natural Science Foundation for Distinguished Young Scholar,Grant/Award Number:18JCJQJC46500。
文摘A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable electronic devices.Herein,we report a flexible and stretchable metal-coated textile prepared by a dynamic stretching–electroplating based on a wavy spandex textile substrate.Benefiting from the unique woven and wavy structure,the metal-coated textile shows a high stretchability of 100%and stable conductivity.In situ scanning electron microscope observation during stretching showed that the tensile strain of the metal-coated textile is mainly attributed to the deformation of the microfiber network at the bottom position of the wave structure.In addition,a sodium carboxymethyl cellulose–polyacrylic acid–potassium hydroxide composite hydrogel has been used as the electrolyte.This hydrogel shows excellent ionic conductivity,mechanical properties,and water retention properties,which makes it suitable for the semi-open system of ZAB.Furthermore,a flexible and stretchable sandwich-structure ZAB,assembled using the above-mentioned electrodes and electrolyte,operates stably even under rapid stretching/releasing cycle deformation.Because of its facile preparation and low cost,this flexible and stretchable ZAB is suitable for fabrication of large-area batteries to obtain higher output current and power to drive wearable electronic devices.
基金support from the National Natural Science Foundation of China(No.52072257)the financial support from the National Key Research and Development Program of China(No.:2019YFE0118800)+2 种基金the support from the National Natural Science Foundation of China and Guangdong Province(No.U1601216)the support from the Shandong Provincial Key R&D Plan and the Public Welfare Special Program,China(2019GGX102038)the Fundamental Research Funds for the Central Universities(No.201822008 and 201941010)。
文摘Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode development.Herein we construct an aqueous zinc ion capacitor possessing an unrivaled combination of high energy and power characteristics by employing a unique dual-ion adsorption mechanism in the cathode side.Through a templating/activating co-assisted carbonization procedure,a routine protein-rich biomass transforms into defect-rich carbon with immense surface area of 3657.5 m^(2) g^(-1) and electrochemically active heteroatom content of 8.0 at%.Comprehensive characterization and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations and anions,which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/charge.The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g^(-1) and retention of72 mAh g^(-1) at ultrahigh current density of 100 A g^(-1)(400 C),corresponding to the outstanding energy and power of 168 Wh kg^(-1)and 61,700 W kg^(-1).Furthermore,practical battery configurations of solid-state pouch and cable-type cells display excellent reliability in electrochemistry as flexible and knittable power sources.
基金the National Natural Science Foundation of China(No.51701140)。
文摘Stainless steel(SS)is one of the most widely used engineering materials in marine engineering.However,its corrosion in the marine atmospheric environment due to the high concentration of Cl-is a problem.The SS corrosion is a threat to the development and security of marine industry;therefore,evaluating the corrosion resistance of SSs is necessary.In this work,atmospheric corrosion detection probes based on a symmetrical electrode system were used to study the corrosion behaviors of 304 SS and 2205 duplex stainless steel(DSS)in a simulated marine atmosphere.A theoretical model for electrochemical noise(EN)data analysis based on the Thevenin electrochemical equivalent circuit(EEC)model was established.The relationship between the EN characteristic parameters and the corrosion rate was obtained.The Thevenin EEC model analysis showed that the relationship between the noise resistance(Rn),the noise impedance[Rsn(f)],and the impedance modulus(|Z(f)|)was Rn≈Rsn=■.Thus,Rn and Rsn can be used as indicators for quantitative corrosion evaluation.The results of EN detection for the 304 SS and 2205 DSS showed that in a simulated marine atmospheric environment,the passive fi lms on the two SSs were relatively intact at the initial exposure stage,and their dissolution rates were slow.The corrosion resistance of the 2205 DSS was higher than that of the 304 SS.With the deposition of Cl-on the SS surface,pitting was initiated and the dissolution rate increased.The pitting initiation process on the SS surface was random,and part of the active pores could be repassivated.
基金This study was supported by the National Science Foundation for Excellent Young Scholar(51722403)National Natural Science Foundation of China(51771134)+2 种基金Tianjin Natural Science Foundation for Distinguished Young Scholar(18JCJQJC46500)National Natural Science Foundation of China and Guangdong Province(U1601216)the National Youth Talent Support Program.
文摘Rechargeable zinc-air batteries(ZABs)have attracted much attention as the next-generation energy conversion and storage devices due to the abundance and environmental friendliness of zinc(Zn)for anode materials,as well as the safety and low cost of aqueous electrolytes.However,rational design of nonprecious and low-cost integrated air cathode materials with a desirable bifunctional oxygen electrocatalytic performance remains a great challenge for the commercialization of rechargeable ZABs.In previous research studies,various cost-effective carbon-supported electrocatalysts and light-weight carbon-based current collectors for air cathodes have been developed,showing vast potential in the application of carbon-based materials.To improve the bifunctional performance and integration of air cathodes,efforts with respect to the design of morphology,defects,and synergistic effects of carbon-based materials have been made.In this perspective,the general understanding of the air cathode construction and the battery working mechanism is discussed.The recent progress in the design of carbon-based materials for air cathodes in rechargeable ZABs is summarized.Several possible future research directions and the expected development trends are also discussed,aiming to facilitate the commercialization of advanced rechargeable ZABs in our life.
基金supported by the National Natural Science Foundation of China(No.51701140).
文摘The purpose of this work was to enhance the corrosion resistance of the passive fi lm on 304 stainless steel(SS)by chemical modifi cation in alkaline phosphate–molybdate solutions.The 304 SS was passivated in both phosphate and phosphate–molybdate mixed solutions to investigate the eff ect of molybdate on its corrosion resistance.The experimental results indicated that the passive fi lm showed better corrosion resistance in Cl?-containing solutions after modifi cation in phosphate–molybdate solutions than in phosphate-only solutions.Energy-dispersive spectroscopy analyses revealed that the passive fi lm formed in phosphate–molybdate solutions contained Mo and P after modifi cation,which is the reason for the enhanced corrosion resistance.
基金the National Key Research and Development Program of China(No.2016YFC0106300)Health and Family Planning Commission of Hubei province joint funding project(No.WJ2018H0009).
文摘The translation and implementation of clinical practice guidelines(CPGs)for Traditional Chinese Medicine(TCM)and Integrated Traditional Chinese and Western medicine is crucial to the adoption of medical science and technology,but the low operability and slow update of integrated traditional Chinese and Western Medicine guidelines,and the lack of integration between guidelines and clinical practice,result in the guidelines not having the desired clinical effects in practice.The application of Artificial Intelligence(AI)to the field of CPGs development aims to shorten the development time,optimize and accelerate the whole process of CPG’s development.This article summarized the current research and application status of AI in development and implementation CPGs for TCM and Integrated Traditional Chinese and Western medicine and proposed the method of Combining real world data and AI technology to enrich for TCM and Integrated Traditional Chinese and Western medicine.
文摘Lung cancer poses a serious threat to human life with high incidence and miRNA is an important biomarkerin tumors. This study aimed to explore the effect of miR-143-3p on the biological function of lung cancer cells and theunderlying mechanism. Eighty-seven samples of lung cancer tissues and 81 samples of tumor-adjacent tissues from patients undergoing radical lung cancer surgery in our hospital were collected. The lung cancer cells and lung fibroblastcells (HFL-1) were purchased, and then miR-143-3p-mimics, miR-NC, si-CTNND1, and NC were transfected into A549 and PC-9 cells to establish cell models. MiR-143-3p and CTNND1 expression levels were measured by the qRT-PCR, Bax, Bcl-2, and CTNND1 expression levels by the Western Blot (WB), and cell proliferation, invasion, and apoptosis by the MTT assay, Transwell assay, and flow cytometry. Dual luciferase report assay was used to determinethe relationship between miR-143-3p and CTNND1. In this study, miR-143-3p was lowly expressed in lung cancer and CTNND1 was highly expressed in lung cancer. The overexpression of miR-143-3p inhibited cell proliferation and invasion, promoted cell apoptosis, significantly increased Bax protein expression, and decreased Bcl-2 protein expression. The inhibition of CTNND1 led to opposite biological characteristic in cells. The dual luciferase reporter assay demonstrated that miR-143-3p was a target region of CTNND1. Such results suggest that miR-143-3p can inhibitthe proliferation and invasion of lung cancer cells by regulating the expression of CTNND1 and promote the apoptosisof lung cancer cells, sott is expected to be a potential target for lung cancer.
基金National Natural Science Foundation of China(Grant No.61871081)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.51827802).
文摘One-port magnetic surface acoustic wave(MSAW) resonators are fabricated by stacking multilayered(FeCoSiB/SiO2)n films directly on top of interdigital electrodes. It is shown that the magneto-acoustic response of the MSAW resonators critically depends the hysteresis of △E effect. For the magnetic multilayer without induced magnetic anisotropy, the resonance frequency( fR) exhibits a butterfly-like dependence on the external field, therefore, enabling bipolar detection of magnetic field smaller than its coercive field. However, for the magnetic multilayers with induced magnetic anisotropy, butterfly-like or loop-like fR–H curves are measured along the interdigtial electrode fingers or the SAW propagation direction, which can be attributed to the competition between the magnetic field-induced anisotropy and the stress-induced or shape anisotropy.
基金support from the National Natural Science Foundation of China(No.52171219).
文摘Spinel LiNi_(0.5-x)Mn_(1.5+x)O_(4)(LNMO)has attracted intensive interest for lithium-ion battery due to its high voltage and high energy density.However,severe capacity fade attributed to unstable surface structure has hampered its commercialization.Oxygen vacancies(OVs)tend to occur in the surface of the material and lead to surface structure reconstruction,which deteriorates the battery performance during electrochemical cycling.Here,we utilize high-temperature-shock(HTS)method to synthesize LNMO materials with fewer surface OVs.Rapid calcination drives lower surface OVs concentration,reducing the content of Mn^(3+)and surface reconstruction layers,which is beneficial to obtain a stable crystal structure.The LNMO material synthesized by HTS method delivers an initial capacity of 127 mAh·g^(-1) at 0.1 C and capacity retention of 81.6%after 300 cycles at 1 C,and exhibits excellent performance at low temperature.
基金supported by the National Natural Science Foun-dation of China(Nos.52231008 and 52001227).
文摘Synthesizing bimetallic nanomaterials,with noble metals as the surface layers and inert metals as the substrates,has been proven to be an effective way to reduce the use of noble metals with maintained catalytic activity.However,an atomic diffusion from the inert substrate to the surface during the long-term operation has been reported to significantly decrease the activity.In this work,a series of catalysis-inert Cu-coated Ni foil were fabricated through electrodeposition and their activities for alkaline hydrogen evolution were investigated.Notably,the Ni/Cu-60 sample showed a similar catalytic property with pure Ni foil and only a slight decrease in HER activity was observed.The X-ray photoelectron spectroscopy(XPS)results indicated a decreased electron concentration of Cu in Ni/Cu-60,and theoretical calculations further demonstrated the electron transfer between the Ni substrate and Cu layer.Our results reveal that a specific composition or structure of an inert metal layer might not significantly decrease the electrocatalytic activity of active metals.Moreover,there are more possibilities for the rational design of metal-based catalysts for electrocatalysis.
基金financially supported by the Key Project of Research and Development Plan of Jiangxi Province(Nos.20223BBG74006 and 20201BBE51007)the National Science Foundation of China(No.52060018)the National Science Fund for Distinguished Young Scholars(No.52125002)。
文摘The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.
基金supported by grants from the National Natural Science Foundation of China(52001227,52122107,51972224and21802037).
文摘Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO_(2) electroreduction reaction(CO_(2)RR).In_(2)O_(3) is well-known for its specific ability to produce formic acid.However,how the crystal phase and surface affect the CO_(2)RR activity is still unclear,making it difficult to further improve the intrinsic activity and screen for the most active structure.In this work,cubic and hexagonal In_(2)O_(3) with different stable surfaces((111)and(110)for cubic,(120)and(104)for hexagonal)are investigated for CO_(2)RR.Theoretical results demonstrate that the adsorption of reactants on cubic In_(2)O_(3) is stronger than that on hexagonal In_(2)O_(3),with the cubic(111)surface being the most active for CO_(2)RR.In experiments,synthesized cubic In_(2)O_(3) nanosheets with predominantly exposed(111)surfaces exhibited a high HCOO^(-)Faradaic efficiency(87.5%)and HCOO^(–)current density(–16.7 mA cm^(-2))at–0.9 V vs RHE.In addition,an aqueous Zn-CO_(2) battery based on a cubic In2O3 cathode was assembled.Our work correlates the phases and surfaces with the CO_(2)RR activity,and provides a fundamental understanding of the structure-function relationship of In_(2)O_(3),thereby contributing to further improvements in its CO_(2)RR activity.Moreover,the results provide a principle for the directional preparation of materials with optimal phases and surfaces for efficient electrocatalysis.
基金supported by the Key research and development program of Hainan province(No.ZDYF2022GXJS006)the National Natural Science Foundation of China(Nos.52231008,52201009,52122107,and 52301013)+5 种基金International Science and Technology Cooperation Program of Hainan Province(No.GHYF2023007)the Hainan Provincial Natural Science Foundation of China(No.223RC401)the Education Department of Hainan Province(Nos.Hnky2024ZD-2 and Hnky2023ZD-2)Starting Research Funds of the Hainan University of China(Nos.KYQD(ZR)-21105 and KYQD(ZR)-23090)Collaborative Innovation Center of Marine Science and Technology,Hainan University(Nos.XTCX2022HYC18 and XTCX2022HYC22)the Scientific and Technological Project of Yunnan Precious Metals Laboratory(No.YPML-2023050268).
文摘Saline water electrolysis is an appealing strategy for hydrogen production,attracting more attention in recent years.NiFe-based electrodes exhibit promise as catalysts for saline water electrolysis.Nevertheless,they suffer from the inferior service life of the oxygen evolution reaction(OER).Herein,we report an oxygen-evolution electrode consisting of a sulfate-modulated nickel-iron hydroxide(NiFeOOH)affording as the catalytic active layer and Fe-Ni_(3)S_(2) as the corrosion-proof layer.The developed electrode only requires overpotentials of 220 and 292 mV to deliver the current density of 10 and 500 mA·cm^(−2),respectively.More importantly,it presents long-term stability exceeding 140 and 100 h in 1 M KOH at high current densities of 500 and 1000 mA·cm^(−2),respectively,as well as 120 h for saline water electrolysis at 100 mA·cm^(−2).Experimental results reveal that the generated sulfate plays an indispensable role in improving stability and corrosion resistance.We assembled and tested an anion exchange membrane electrolyzer with Pt/C and NiFeS/NIF as the cathode and anode,respectively,under industrial conditions.This overall water-splitting electrolyzer achieves an impressive energy conversion efficiency of 75%±0.5%.This report offers fresh insights into the design of stable NiFe-based electrodes,which may further promote its practical applications for saline water electrolysis.