Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ...Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
Pinus elliottii×P.caribaea is a widely planted commercial tree hybrid in South China.To investigate the potential of physiological parameters for clonal selection,cuttings of three clones(EH3,EH4 and EH5)and a co...Pinus elliottii×P.caribaea is a widely planted commercial tree hybrid in South China.To investigate the potential of physiological parameters for clonal selection,cuttings of three clones(EH3,EH4 and EH5)and a control were grown in phosphorus treated pots.Significant variations to phosphorous,photosystem II activity and polar metabolite abundance in needles were noted among clones.Clone EH5 was the most P-responsive and had maximum height growth.The highest maximum quantum yield of PSII in the dark(F_(v)/F_(m)),maximum quantum yield of PSII in the light(F_(v)'/F_(m)')and the actual PSII efficiency(Φ_(PSII))values were also found in EH5.A total of 64 polar metabolites were identified,21 were regulated by phosphorous,while 28 accumulated differentially among the three clones.There were few overlapping responsive metabolites to phosphorous fertilization.In EH5,the abundance of maltotriitol,neohesperidin and raffinose were highest,whereas galactinol and shikimic acid were lower compared with EH3 and EH4.The results reveal that physiological traits were genetically controlled and might be useful for selecting clones with high phosphorous utilization efficiency.展开更多
Although the function of tRNAs in the translational process is well established,it remains controversial whether tRNA abundance is tightly associated with translational efficiency(TE)in mammals.Moreover,how critically...Although the function of tRNAs in the translational process is well established,it remains controversial whether tRNA abundance is tightly associated with translational efficiency(TE)in mammals.Moreover,how critically the expression of tRNAs contributes to the establishment of tissue-specific proteomes in mammals has not been well addressed.Here,we measured both tRNA expression using demethylase-tRNA sequencing(DM-tRNA-seq)and TE of mRNAs using ribosome-tagging sequencing(RiboTag-seq)in the brain,heart,and testis of mice.Remarkable variation in the expression of tRNA isodecoders was observed among different tissues.When the statistical effect of isodecoder-grouping on reducing variations is considered through permutating the anticodons,we observed an expected reduction in the variation of anticodon expression across all samples,an unexpected smaller variation of anticodon usage bias,and an unexpected larger variation of tRNA isotype expression at amino acid level.Regardless of whether or not they share the same anticodons,the isodecoders encoding the same amino acids are co-expressed across different tissues.Based on the expression of tRNAs and the TE of mRNAs,we find that the tRNA adaptation index(tAI)and TE are significantly correlated in the same tissues but not between tissues;and tRNA expression and the amino acid composition of translating peptides are positively correlated in the same tissues but not between tissues.We therefore hypothesize that the tissue-specific expression of tRNAs might be due to post-transcriptional mechanisms.This study provides a resource for tRNA and translation studies,as well as novel insights into the dynamics of tRNAs and their roles in translational regulation.展开更多
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
基金the National Natural Science Foundation of China(Nos.U21A20108,52322403,52174108,and 51974105)the Support Plan for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT024)+1 种基金the Scientific and technological innovation research team of Henan Polytechnic University(No.T2021-5)the Henan Excellent Youth Science Foundation(No.222300420045).
文摘Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
基金funded by the Science and Technology Planning Project of Guangdong Province(2017B020205003)the Natural Science Foundation of Guangdong Province(2014A030313657)。
文摘Pinus elliottii×P.caribaea is a widely planted commercial tree hybrid in South China.To investigate the potential of physiological parameters for clonal selection,cuttings of three clones(EH3,EH4 and EH5)and a control were grown in phosphorus treated pots.Significant variations to phosphorous,photosystem II activity and polar metabolite abundance in needles were noted among clones.Clone EH5 was the most P-responsive and had maximum height growth.The highest maximum quantum yield of PSII in the dark(F_(v)/F_(m)),maximum quantum yield of PSII in the light(F_(v)'/F_(m)')and the actual PSII efficiency(Φ_(PSII))values were also found in EH5.A total of 64 polar metabolites were identified,21 were regulated by phosphorous,while 28 accumulated differentially among the three clones.There were few overlapping responsive metabolites to phosphorous fertilization.In EH5,the abundance of maltotriitol,neohesperidin and raffinose were highest,whereas galactinol and shikimic acid were lower compared with EH3 and EH4.The results reveal that physiological traits were genetically controlled and might be useful for selecting clones with high phosphorous utilization efficiency.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0107200 to Jinkai Wang)the National Natural Science Foundation of China(Grant Nos.31970594 and 31771446 to Jinkai Wang,Grant Nos.81922052 and 81974435 to Shuibin Lin+3 种基金Grant No.31971335 to Dan Ohtan Wang)the Natural Science Foundation of Guangdong,China(Grant No.2019B151502011 to Shuibin LinGrant No.2021A1515110650 to Yan Gao)the China Postdoctoral Science Foundation(Grant No.2021M703755 to Yan Gao).
文摘Although the function of tRNAs in the translational process is well established,it remains controversial whether tRNA abundance is tightly associated with translational efficiency(TE)in mammals.Moreover,how critically the expression of tRNAs contributes to the establishment of tissue-specific proteomes in mammals has not been well addressed.Here,we measured both tRNA expression using demethylase-tRNA sequencing(DM-tRNA-seq)and TE of mRNAs using ribosome-tagging sequencing(RiboTag-seq)in the brain,heart,and testis of mice.Remarkable variation in the expression of tRNA isodecoders was observed among different tissues.When the statistical effect of isodecoder-grouping on reducing variations is considered through permutating the anticodons,we observed an expected reduction in the variation of anticodon expression across all samples,an unexpected smaller variation of anticodon usage bias,and an unexpected larger variation of tRNA isotype expression at amino acid level.Regardless of whether or not they share the same anticodons,the isodecoders encoding the same amino acids are co-expressed across different tissues.Based on the expression of tRNAs and the TE of mRNAs,we find that the tRNA adaptation index(tAI)and TE are significantly correlated in the same tissues but not between tissues;and tRNA expression and the amino acid composition of translating peptides are positively correlated in the same tissues but not between tissues.We therefore hypothesize that the tissue-specific expression of tRNAs might be due to post-transcriptional mechanisms.This study provides a resource for tRNA and translation studies,as well as novel insights into the dynamics of tRNAs and their roles in translational regulation.