期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
1
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang wenbo pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
Enhanced photocatalytic performance of Bi_(4)O_(5)Br_(2)with threedimensionally ordered macroporous structure for phenol removal 被引量:1
2
作者 Kunfeng Zhang Hongxia Chen +3 位作者 wenbo pei Hongxing Dai Junshan Li Yongfa Zhu 《Nano Research》 SCIE EI CSCD 2023年第7期8871-8881,共11页
Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photoc... Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal. 展开更多
关键词 three-dimensionally ordered macroporous structure Bi_(4)O_(5)Br_(2) O_(2)activation PHOTOCATALYSIS degradation
原文传递
Rare earth oxides and their supported noble metals in application of environmental catalysis 被引量:17
3
作者 Zhiquan Hou wenbo pei +5 位作者 Xing Zhang Kunfeng Zhang Yuxi Liu Jiguang Deng Lin Jing Hongxing Dai 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第8期819-839,I0001,共22页
Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous cataly... Volatile organic compounds(VOCs),methane,carbon monoxide,soot,automotive exhaust,and nitrogen oxides are harmful to the atmosphere and human health.It is urgent to strictly control their emissions.Heterogeneous catalysis is an effective pathway for the removal of these pollutants,and the critical issue is the development of novel and high-performance catalysts.In this review,we briefly summarize the preparation methods,physicochemical properties,catalytic activities,and related reaction mechanisms for the above pollutants removal of the rare earth oxides,mixed rare earth oxide,rare earth oxidesupported noble metal,and mixed rare earth oxide-supported noble metal catalysts that have been investigated by our group and other researchers.It was found that catalytic performance was associated with the factors,such as specific surface area,pore structure,particle size and dispersion,adsorbed oxygen species concentration,reducibility,reactant activation ability or interaction between metal nanoparticles and support.Furthermore,we also envision the development trend of such a topic in future work. 展开更多
关键词 Volatile organic compound Atmospheric pollutant Rare earth oxide Mixed rare earth oxide Supported noble metal catalyst Porous mixed rare earth oxide
原文传递
Pd/silicalite-1: An highly active catalyst for the oxidative removal of toluene 被引量:2
4
作者 Linke Wu Jiguang Deng +8 位作者 Yuxi Liu Lin Jing Xiaohui Yu Xing Zhang Ruyi Gao wenbo pei Xiuqing Hao Ali Rastegarpanah Hongxing Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第6期209-219,共11页
Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the i... Catalytic combustion is thought as an efficient and economic pathway to remove volatile organic compounds, and its critical issue is the development of high-performance catalytic materials. In this work, we used the in situ synthesis method to prepare the silicalite-1(S-1)-supported Pd nanoparticles(NPs). It is found that the as-prepared catalysts displayed a hexagonal prism morphology and a surface area of 390-440 m^(2)/g. The sample(0.28Pd/S-1-H)derived after reduction at 500°C in 10 vol% H_(2)showed the best catalytic activity for toluene combustion(T50%= 180℃ and T90%= 189℃ at a space velocity of 40,000 m L/(g·hr), turnover frequency(TOFPd) at 160℃ = 3.46 × 10^(-3)sec^(-1), and specific reaction rate at 160℃ = 63.8μmol/(gPd·sec)), with the apparent activation energy(41 k J/mol) obtained over the bestperforming 0.28Pd/S-1-H sample being much lower than those(51-70 k J/mol) obtained over the other samples(0.28Pd/S-1-A derived from calcination at 500℃ in air, 0.26Pd/S-1-im derived from the impregnation route, and 0.27Pd/ZSM-5-H prepared after reduction at 500℃ in 10 vol% H_(2)). Furthermore, the 0.28Pd/S-1-H sample possessed good thermal stability and its partial deactivation due to CO_(2) or H_(2)O introduction was reversible, but SO_(2) addition resulted in an irreversible deactivation. The possible pathways of toluene oxidation over 0.28Pd/S-1-H was toluene → p-methylbenzoquinone → maleic anhydride, benzoic acid, benzaldehyde → carbon dioxide and water. We conclude that the good dispersion of Pd NPs, high adsorption oxygen species concentration, large toluene adsorption capacity, strong acidity,and more Pd~0 species were responsible for the good catalytic performance of 0.28Pd/S-1-H. 展开更多
关键词 SILICALITE-1 Hexagonal prism shape Supported palladium catalyst Volatile organic compound Toluene combustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部