The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,...The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.展开更多
Fusagerins A–F(1–6),six new alkaloids including a unique one with the rare a-(N-formyl)carboxamide moiety(1),a hydantoin(imidazolidin-2,4-dione)derivative(2),and four fungerin analogues(3–6),were isolated from the ...Fusagerins A–F(1–6),six new alkaloids including a unique one with the rare a-(N-formyl)carboxamide moiety(1),a hydantoin(imidazolidin-2,4-dione)derivative(2),and four fungerin analogues(3–6),were isolated from the crude extract of the fungus Fusarium sp.,together with the known compound fungerin(7).Compound 2 was isolated as a racemate and further separated into two enantiomers on a chiral HPLC column.The structures of 1–6 were determined mainly by NMR experiments,and the absolute configuration of 1 and 2 was assigned by electronic circular dichroism(ECD)calculations.Compound 7 showed antibacterial activity against Staphylococcus aureus and Streptococcus pneumoniae,and weak cytotoxicity against the T24 cells.展开更多
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases(CVDs),the world’s primary cause of death.Ginkgo biloba,a we...Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases(CVDs),the world’s primary cause of death.Ginkgo biloba,a well-known traditional Chinese medicine with notable cardiovascular actions,has been used as a cardio-and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries.Preclinical studies have shown that ginkgolide B,a bioactive component in Ginkgo biloba,can ameliorate atherosclerosis in cultured vascular cells and disease models.Of clinical relevance,several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases,such as ischemia stroke.Here,we present a comprehensive review of the pharmacological activities,pharmacokinetic characteristics,and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy.We highlight new molecular targets of ginkgolide B,including nicotinamide adenine dinucleotide phosphate oxidases(NADPH oxidase),lectin-like oxidized LDL receptor-1(LOX-1),sirtuin 1(SIRT1),platelet-activating factor(PAF),proprotein convertase subtilisin/kexin type 9(PCSK9)and others.Finally,we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.展开更多
The building blocks-based molecular network(BBMN)strategy was applied to the phytochemical investigation of Cleistocalyx operculatus,leading to the targeted isolation of eighteen novel cinnamoylphloroglucinol-terpene ...The building blocks-based molecular network(BBMN)strategy was applied to the phytochemical investigation of Cleistocalyx operculatus,leading to the targeted isolation of eighteen novel cinnamoylphloroglucinol-terpene adducts(CPTAs)with diverse skeleton types(cleistoperones A-R,1-18).Their structures including absolute configurations were determined by extensive spectroscopic methods,quantum chemical calculations,and single-crystal X-ray crystallographic experiments.Cleistoperone A(1),consisting of a cinnamoylphloroglucinol motif and two linear monoterpene moieties,represents an unprecedented macrocyclic CPTA,whose densely functionalized tricyclo[15.3.1.0^(3,8)]heneicosane bridge ring skeleton contains an enolizableβ,β′-triketone system and two different kinds of stereogenic elements(including five point and three planar chiralities).Cleistoperones B and C(2 and 3)are two new skeletal CPTAs with an unusual coupling pattern between the(nor)monoterpene moiety and the cinnamoyl chain of the cinnamoylphloroglucinol unit.Cleistoperone D(4)possesses an unprecedented cage-like 6/6/6/4/6-fused heteropentacyclic scaffold.The plausible biosynthetic pathways for 1-18 were also proposed.Notably,compounds 1,4,7,8,and 18 exhibited significant antiviral activity against respiratory syncytial virus(RSV).The most potent one,cleistoperone A(1)with IC_(50) value of 1.71±0.61μmol/L,could effectively inhibit virus replication via affecting the Akt/mTOR/p70S6K signaling pathway.展开更多
The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compound...The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compounds 1-5 featured new carbon skeletons in which phloroglucinol derivatives were coupled with lupane-and dammarane-type triterpenoids through different linkage patterns.Their structures and absolute configurations were elucidated by comprehensive analysis of spectroscopic data and quantum chemical calculations.Biosynthetic pathways for compounds 1-5 were proposed on the basis of the coexisting precursors.Guided by the biogenetic pathways,the biomimetic synthesis of compound 1 was also achieved.Additionally,compounds 2,3,and 5 exhibited potent antiviral activities against herpes simplex virus type-1(HSV-1)infection,and compounds 2 and 5 displayed significant anti-inflammatory activities on RAW264.7 cells.展开更多
Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer(LNM-CRC) cel...Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer(LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha(FAPα) expression in LNM-CRC cells. Gain-or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis(CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.展开更多
We deeply regret that the representative image of invaded 143B cells treated with Z-GP-DAVLBH + AXL-KD in the lower panel of Fig. 6C was incorrect due to inadvertent mistake of copying and pasting in the process of as...We deeply regret that the representative image of invaded 143B cells treated with Z-GP-DAVLBH + AXL-KD in the lower panel of Fig. 6C was incorrect due to inadvertent mistake of copying and pasting in the process of assembling figures with Adobe Illustrator software. The image has now been corrected, and the quantification of cell invasion in Fig. 6C remains correct. The corrected version of Fig. 6C has been provided below, and the change did not affect the results and conclusions of this study. We have provided the original data of this figure to Editorial Office, and the Editorial Office or the corresponding authors can be contacted for original data access.展开更多
Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(...Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(HSC)activation,critically determines morbidity and mortality in patients with NASH.Pyruvate kinase M2(PKM2)is involved in immune activation and inflammatory liver diseases;however,its role and therapeutic potential in NASH-related fibrosis remain largely unexplored.Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells(NPCs),especially macrophages,in the livers of patients with fibrotic NASH.Macrophage-specific PKM2 knockout(PKM2^(FL/FL)LysM-Cre)significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine-and choline-deficient(MCD)diet,a high-fat high-cholesterol(HFHC)diet,and a western diet plus weekly carbon tetrachloride injection(WD/CCl_(4)).Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C^(high) macrophage infiltration.Mechanistically,PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3(NLRP3)activation in proinflammatory macrophages,which induced HSC activation and fibrogenesis.A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo.Translationally,ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides,a novel oligonucleotide drug that preferentially accumulates in the liver,dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity.The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis.Thus,therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.展开更多
Heat shock protein 90(Hsp90)is a highly conserved molecular chaperone that plays a vital role in the signal transduction of cancers.Hsp90 inhibitors are able to inhibit Hsp90 or the complex of Hsp90 and co-chaperones ...Heat shock protein 90(Hsp90)is a highly conserved molecular chaperone that plays a vital role in the signal transduction of cancers.Hsp90 inhibitors are able to inhibit Hsp90 or the complex of Hsp90 and co-chaperones resulting in the degradation of Hsp90-dependent client proteins through the ubiqui tina tion-proteasome pathway,thereby leading to the growth inhibition of tumor cells.This review will briefy discuss the molecular structure and biological function of Hsp90,and focus on a summary of recent progress in the development and testing of natural Hsp90 inhibitors and their different means by which they interact with Hsp90.展开更多
Osteosarcoma is a kind of bone tumor with highly proliferative and invasive properties,a high incidence of pulmonary metastasis and a poor prognosis.Chemotherapy is the mainstay of treatment for osteosarcoma.Currently...Osteosarcoma is a kind of bone tumor with highly proliferative and invasive properties,a high incidence of pulmonary metastasis and a poor prognosis.Chemotherapy is the mainstay of treatment for osteosarcoma.Currently,there are no molecular targeted drugs approved for osteosarcoma treatment,particularly effective drugs for osteosarcoma with pulmonary metastases.It has been reported that fibroblast activation protein alpha(FAPa)is upregulated in osteosarcoma and critically associated with osteosarcoma progression and metastasis,demonstrating that FAPa-targeted agents might be a promising therapeutic strategy for osteosarcoma.In the present study,we reported that the FAPa-activated vinblastine prodrug Z-GP-DAVLBH exhibited potent antitumor activities against FAPa-positive osteosarcoma cells in vitro and in vivo.Z-GP-DAVLBH inhibited the growth and induced the apoptosis of osteosarcoma cells.Importantly,it also decreased the migration and invasion capacities and reversed epithelial-mesenchymal transition(EMT)of osteosarcoma cells in vitro and suppressed pulmonary metastasis of osteosarcoma xenografts in vivo.Mechanistically,Z-GP-DAVLBH suppressed the AXL/AKT/GSK-3β/β-catenin pathway,leading to inhibition of the growth and metastatic spread of osteosarcoma cells.These findings demonstrate that Z-GP-DAVLBH is a promising agent for the treatment of FAPa-positive osteosarcoma,particularly osteosarcoma with pulmonary metastases.展开更多
基金supported by the National Key Research and Development Program of China(2018YFC1900206-2)Science&Technology Plan Projects of Guizhou Province(Qiankehe Service Enterprises[2018]4011)Science and Technology Support Plan Project of Guizhou Provincial:Qiankehe Support[2021]General 487。
文摘The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH.
基金the National Natural Science Foundation of China(81273395)the National Program of Drug Research and Development(2012ZX09301-003).
文摘Fusagerins A–F(1–6),six new alkaloids including a unique one with the rare a-(N-formyl)carboxamide moiety(1),a hydantoin(imidazolidin-2,4-dione)derivative(2),and four fungerin analogues(3–6),were isolated from the crude extract of the fungus Fusarium sp.,together with the known compound fungerin(7).Compound 2 was isolated as a racemate and further separated into two enantiomers on a chiral HPLC column.The structures of 1–6 were determined mainly by NMR experiments,and the absolute configuration of 1 and 2 was assigned by electronic circular dichroism(ECD)calculations.Compound 7 showed antibacterial activity against Staphylococcus aureus and Streptococcus pneumoniae,and weak cytotoxicity against the T24 cells.
基金This work is supported by National Natural Science Foundation of China(82270500,81870324,82203304,82070464,U1401225,U21A20419)National Mega-Project for Innovative Drugs(2019ZX09735002)+1 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y036,2017BT01Y093,China)National Engineering and Technology Research Center for New drug Druggability Evaluation(Seed Program of Guangdong Province,2017B090903004,China).
文摘Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases(CVDs),the world’s primary cause of death.Ginkgo biloba,a well-known traditional Chinese medicine with notable cardiovascular actions,has been used as a cardio-and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries.Preclinical studies have shown that ginkgolide B,a bioactive component in Ginkgo biloba,can ameliorate atherosclerosis in cultured vascular cells and disease models.Of clinical relevance,several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases,such as ischemia stroke.Here,we present a comprehensive review of the pharmacological activities,pharmacokinetic characteristics,and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy.We highlight new molecular targets of ginkgolide B,including nicotinamide adenine dinucleotide phosphate oxidases(NADPH oxidase),lectin-like oxidized LDL receptor-1(LOX-1),sirtuin 1(SIRT1),platelet-activating factor(PAF),proprotein convertase subtilisin/kexin type 9(PCSK9)and others.Finally,we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
基金supported by the National Key R&D Program of China(No.2023YFC3503902,China)the National Natural Science Foundation of China(Nos.82293681(82293680)+6 种基金82321004,82204234,and 82273822,China)the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515120015 and 2021A1515111021,China)the Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000026,China)the Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine(No.2023LSYS002,China)the Guangzhou Key Laboratory of Traditional Chinese Medicine&Disease Susceptibility(No.2024A03J090,China)the Science and Technology Projects in Guangzhou(No.202102070001,China)supported by the high-performance computing platform of Jinan University.
文摘The building blocks-based molecular network(BBMN)strategy was applied to the phytochemical investigation of Cleistocalyx operculatus,leading to the targeted isolation of eighteen novel cinnamoylphloroglucinol-terpene adducts(CPTAs)with diverse skeleton types(cleistoperones A-R,1-18).Their structures including absolute configurations were determined by extensive spectroscopic methods,quantum chemical calculations,and single-crystal X-ray crystallographic experiments.Cleistoperone A(1),consisting of a cinnamoylphloroglucinol motif and two linear monoterpene moieties,represents an unprecedented macrocyclic CPTA,whose densely functionalized tricyclo[15.3.1.0^(3,8)]heneicosane bridge ring skeleton contains an enolizableβ,β′-triketone system and two different kinds of stereogenic elements(including five point and three planar chiralities).Cleistoperones B and C(2 and 3)are two new skeletal CPTAs with an unusual coupling pattern between the(nor)monoterpene moiety and the cinnamoyl chain of the cinnamoylphloroglucinol unit.Cleistoperone D(4)possesses an unprecedented cage-like 6/6/6/4/6-fused heteropentacyclic scaffold.The plausible biosynthetic pathways for 1-18 were also proposed.Notably,compounds 1,4,7,8,and 18 exhibited significant antiviral activity against respiratory syncytial virus(RSV).The most potent one,cleistoperone A(1)with IC_(50) value of 1.71±0.61μmol/L,could effectively inhibit virus replication via affecting the Akt/mTOR/p70S6K signaling pathway.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Nos.2020B1515120066 and 2022A1515010010)the National Natural Science Foundation of China[Nos.82293681(82293680)and 82273822]+3 种基金the Science and Technology Key Project of Guangdong Province(No.2020B1111110004)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Y036)the Fundamental Research Funds for the Central Universitiesthe support of K.C.Wong Education Foundation。
文摘The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compounds 1-5 featured new carbon skeletons in which phloroglucinol derivatives were coupled with lupane-and dammarane-type triterpenoids through different linkage patterns.Their structures and absolute configurations were elucidated by comprehensive analysis of spectroscopic data and quantum chemical calculations.Biosynthetic pathways for compounds 1-5 were proposed on the basis of the coexisting precursors.Guided by the biogenetic pathways,the biomimetic synthesis of compound 1 was also achieved.Additionally,compounds 2,3,and 5 exhibited potent antiviral activities against herpes simplex virus type-1(HSV-1)infection,and compounds 2 and 5 displayed significant anti-inflammatory activities on RAW264.7 cells.
基金supported by the National Natural Science Foundation of China(82273941,81973340,82204427,81803566,82003796,81773758)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y036,China)+9 种基金Natural Science Foundation of Guangdong Province(2022A1515011813,2021A1515110242,2020A1515010071,2019A1515010144,2019A1515110543,2019A1515011934,China)Ministry of Science and Technology of China(2018ZX09711001-008-008)National high-level personnel of special support program(Zhang Dongmei),National Key R&D Program of China(2017YFC 1703800)Technology Key Project of Guangdong Province(2020B1111110004,China)Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research,College of Pharmacy(2020B1212060076,China)Special Funds for the Cultivation of Guangdong College Students’Scientifc and Technological Innovation(“Climbing Program”Special Funds)(pdjh2021a0052,China)Science and Technology Projects in Guangzhou(2023A03J0602,202201010173,202102070001,202002030010,China)Young S&T Talent Training Program of Guangdong Provincial Association for S&T,China(SKXRC202216)Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University(JNU1AF-CFTP-2022-a01227,China)China Postdoctoral Science Foundation(2022M 711345,China).
文摘Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer(LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha(FAPα) expression in LNM-CRC cells. Gain-or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis(CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.
文摘We deeply regret that the representative image of invaded 143B cells treated with Z-GP-DAVLBH + AXL-KD in the lower panel of Fig. 6C was incorrect due to inadvertent mistake of copying and pasting in the process of assembling figures with Adobe Illustrator software. The image has now been corrected, and the quantification of cell invasion in Fig. 6C remains correct. The corrected version of Fig. 6C has been provided below, and the change did not affect the results and conclusions of this study. We have provided the original data of this figure to Editorial Office, and the Editorial Office or the corresponding authors can be contacted for original data access.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B1111110004)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y036)+2 种基金the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000004)the National Natural Science Foundation of China(81871987,82293680,82293681,and 82273154)the Guangdong Basic and Applied Research Foundation(2023A1515012905 and 2022A1515012581)。
文摘Nonalcoholic steatohepatitis(NASH)may soon become the leading cause of end-stage liver disease worldwide with limited treatment options.Liver fibrosis,which is driven by chronic inflammation and hepatic stellate cell(HSC)activation,critically determines morbidity and mortality in patients with NASH.Pyruvate kinase M2(PKM2)is involved in immune activation and inflammatory liver diseases;however,its role and therapeutic potential in NASH-related fibrosis remain largely unexplored.Bioinformatics screening and analysis of human and murine NASH livers indicated that PKM2 was upregulated in nonparenchymal cells(NPCs),especially macrophages,in the livers of patients with fibrotic NASH.Macrophage-specific PKM2 knockout(PKM2^(FL/FL)LysM-Cre)significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by a methionine-and choline-deficient(MCD)diet,a high-fat high-cholesterol(HFHC)diet,and a western diet plus weekly carbon tetrachloride injection(WD/CCl_(4)).Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophages reduced profibrotic Ly6C^(high) macrophage infiltration.Mechanistically,PKM2-dependent glycolysis promoted NLR family pyrin domain containing 3(NLRP3)activation in proinflammatory macrophages,which induced HSC activation and fibrogenesis.A pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo.Translationally,ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides,a novel oligonucleotide drug that preferentially accumulates in the liver,dose-dependently reversed NASH-related fibrosis without causing observable hepatotoxicity.The present study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis.Thus,therapeutic modulation of PKM2 in a macrophage-specific or liver-specific manner may serve as a novel strategy to combat NASH-related fibrosis.
基金This work was supported by National Science Foundation of China(90913020 and 30901847)Science and Technology Program of China(2012ZX09103-101-053)Science and Technology Star of Zhujiang of Guangzhou City(Dongmei Zhang).
文摘Heat shock protein 90(Hsp90)is a highly conserved molecular chaperone that plays a vital role in the signal transduction of cancers.Hsp90 inhibitors are able to inhibit Hsp90 or the complex of Hsp90 and co-chaperones resulting in the degradation of Hsp90-dependent client proteins through the ubiqui tina tion-proteasome pathway,thereby leading to the growth inhibition of tumor cells.This review will briefy discuss the molecular structure and biological function of Hsp90,and focus on a summary of recent progress in the development and testing of natural Hsp90 inhibitors and their different means by which they interact with Hsp90.
基金supported by National Natural Science Foundation of China(grant numbers:82003796,81803566,81973340 and 81630095)Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program(grant number:2017BT01Y036,China)+5 种基金National High-level Personnel of the Special Support Program(DM Zhang,China)National Science and Technology Major Project(grant number:2018ZX09711001008-008,China)Key-Area Research and Development Program of Guangdong Province(grant number:2020B1111110004,China)Natural Science Foundation of Guangdong Province(grant number:2019A1515010144,China)Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research,College of Pharmacy(grant number:2020B1212060076,China)Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(grant number:pdjh2021a0052,China)。
文摘Osteosarcoma is a kind of bone tumor with highly proliferative and invasive properties,a high incidence of pulmonary metastasis and a poor prognosis.Chemotherapy is the mainstay of treatment for osteosarcoma.Currently,there are no molecular targeted drugs approved for osteosarcoma treatment,particularly effective drugs for osteosarcoma with pulmonary metastases.It has been reported that fibroblast activation protein alpha(FAPa)is upregulated in osteosarcoma and critically associated with osteosarcoma progression and metastasis,demonstrating that FAPa-targeted agents might be a promising therapeutic strategy for osteosarcoma.In the present study,we reported that the FAPa-activated vinblastine prodrug Z-GP-DAVLBH exhibited potent antitumor activities against FAPa-positive osteosarcoma cells in vitro and in vivo.Z-GP-DAVLBH inhibited the growth and induced the apoptosis of osteosarcoma cells.Importantly,it also decreased the migration and invasion capacities and reversed epithelial-mesenchymal transition(EMT)of osteosarcoma cells in vitro and suppressed pulmonary metastasis of osteosarcoma xenografts in vivo.Mechanistically,Z-GP-DAVLBH suppressed the AXL/AKT/GSK-3β/β-catenin pathway,leading to inhibition of the growth and metastatic spread of osteosarcoma cells.These findings demonstrate that Z-GP-DAVLBH is a promising agent for the treatment of FAPa-positive osteosarcoma,particularly osteosarcoma with pulmonary metastases.