This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag...This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.展开更多
This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the ...This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the input and the output of the PMSM.Then,the novel MFSMC method is presented,and the controller is designed based on ULM and MFSMC.A sliding mode observer(SMO)is constructed to estimate the unknown part of the ULM.The estimated unknown part is feedbacked to MFSMC controller to performcompensation for parameter perturbations and external disturbances.Compared with the sliding mode control(SMC)method,the results of simulation and experiment demonstrate that the presented MFSMC method improves the dynamic response and robustness of the PMSM drive system.展开更多
In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to thr...In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to three different strategies:conventional method(Control group A),inoculation with biofloc recovered from a tilapia biofloc culture system(Group B),and addition with extra nitrite(Group C)in the Moving bed biofilm reactor(MBBR)was compared.Among them,the biofloc-inoculated group considerably accelerated the nitrification process in the MBBR(38 d),which is roughly 18 d faster than the control group(A)(56 d)and 21 d faster than group C(59 d).Less ammonia(8 mg/L NH_(4)^(+)-N,10 mg/L in other groups)and external nitrite(2 mg/L NO_(2)^(-)N)in the influent caused effluent ammonia to drop more slowly(5 d slower than the control group,8 d slower than the B group),which is detrimental to the nitrification process’development.Notably,the influent’s hydraulic retention time(HRT)was reduced from 12 h to 6 h following the successful establishment of nitrification.During the adaptation to reduced HRT,the MBBR inoculated with biofloc experienced short-term changes in the water quality index of the effluent water,whereas the other groups did not.The biofilm seeded with biofloc had the highest mean gray value ratio(1.42)of live/dead cell fluorescence,which grew better and could cover the entire groove under multiple microscope observations.However,the other groups did not demonstrate a similar trend.In summary,the research found that seeding biofloc use as nitrification bioaugmentation into the MBBR of the recirculating aquaculture system(RAS)to greatly speed up the nitrification process.展开更多
基金supported by the Natural Science Foundation of China under Grant No.61733004the Scientific Research Fund of the Hunan Provincial Education Department under Grand No.18A267.
文摘This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.
基金This work was supported in part by the Hunan Provincial Natural Science Foundation of China under Grant Nos.2020JJ6083,2019JJ40072,2021JJ50052 and 2020JJ6067the Program of JSPS(Japan Society for the Promotion of Science)International Research Fellows under Grant No.19F19703+3 种基金the Scientific Research Fund of the Hunan Provincial Education Department under Grant No.18A267the Natural Science Foundation of China under Grant No.61773159in part by the Teaching Reform Research Project of Hunan Provincial Education Department of China(Hunan Education Notice[2019]No.291)under Grant No.543the Degree&Postgraduate Education Reform Project of Hunan Province under Grant No.2019JGZD068.
文摘This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the input and the output of the PMSM.Then,the novel MFSMC method is presented,and the controller is designed based on ULM and MFSMC.A sliding mode observer(SMO)is constructed to estimate the unknown part of the ULM.The estimated unknown part is feedbacked to MFSMC controller to performcompensation for parameter perturbations and external disturbances.Compared with the sliding mode control(SMC)method,the results of simulation and experiment demonstrate that the presented MFSMC method improves the dynamic response and robustness of the PMSM drive system.
基金the Shanghai Municipal Science and Technology Commission Project(19DZ2284300).
文摘In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to three different strategies:conventional method(Control group A),inoculation with biofloc recovered from a tilapia biofloc culture system(Group B),and addition with extra nitrite(Group C)in the Moving bed biofilm reactor(MBBR)was compared.Among them,the biofloc-inoculated group considerably accelerated the nitrification process in the MBBR(38 d),which is roughly 18 d faster than the control group(A)(56 d)and 21 d faster than group C(59 d).Less ammonia(8 mg/L NH_(4)^(+)-N,10 mg/L in other groups)and external nitrite(2 mg/L NO_(2)^(-)N)in the influent caused effluent ammonia to drop more slowly(5 d slower than the control group,8 d slower than the B group),which is detrimental to the nitrification process’development.Notably,the influent’s hydraulic retention time(HRT)was reduced from 12 h to 6 h following the successful establishment of nitrification.During the adaptation to reduced HRT,the MBBR inoculated with biofloc experienced short-term changes in the water quality index of the effluent water,whereas the other groups did not.The biofilm seeded with biofloc had the highest mean gray value ratio(1.42)of live/dead cell fluorescence,which grew better and could cover the entire groove under multiple microscope observations.However,the other groups did not demonstrate a similar trend.In summary,the research found that seeding biofloc use as nitrification bioaugmentation into the MBBR of the recirculating aquaculture system(RAS)to greatly speed up the nitrification process.