Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
Objective Intracranial hemorrhage(ICH),the second most common subtype of stroke,exacerbates the disruption of the blood-brain barrier(BBB),leading to vasogenic edema,plasma protein extravasation,and infiltration of ne...Objective Intracranial hemorrhage(ICH),the second most common subtype of stroke,exacerbates the disruption of the blood-brain barrier(BBB),leading to vasogenic edema,plasma protein extravasation,and infiltration of neurotoxic substances.The clearance capacity of the brain plays a crucial role in maintaining BBB homeostasis and facilitating patient recovery after hemorrhage.This study aimed to investigate the effect of circadian rhythms on BBB function,neuronal damage,and clearance capabilities.Methods The transwell model and hemoglobin were co-cultured to simulate the BBB environment after ICH.After intervention with different light groups,neuronal apoptosis was determined,glial phagocytosis was analyzed,the expression of endogenous clearing-related proteins aquaporin 4(AQP4)and low-density lipoprotein receptor-related protein 1(LRP1)was detected by western blotting and immunofluorescence dual standard method,and the expression of the tight junction protein occludin and melatonin receptor 1A(MTNR1A)was quantitatively analyzed.Results Circadian rhythms play a key role in maintaining the integrity of the BBB,reducing oxidative stress-induced neuronal damage,and improving microglial phagocytosis.Meanwhile,the expression of occludin and MTNR1A in neurovascular unit(NVU)co-cultured with hemoglobin improved the expression of AQP4 and LRP1,the key proteins in the NVU's endogenous brain clearance system.Conclusion Circadian rhythm(alternating black and white light)protects the NVU BBB function after ICH,promotes the expression of proteins related to the clearance of the hematoma,provides new evidence for the clinical treatment of patients recovering from ICH,and improves the circadian rhythm to promote brain metabolism and hematoma clearance.展开更多
The male-sterile line has been largely used in the hybrid seed production of pepper, which can effectively improve the efficiency of hybrid seed production. However, the formation mechanism of male sterility in pepper...The male-sterile line has been largely used in the hybrid seed production of pepper, which can effectively improve the efficiency of hybrid seed production. However, the formation mechanism of male sterility in pepper remains unclear. In the present study, we compared the gene expression patterns between pepper cytoplasmic male sterile line 9704 A and its maintainer 9704 B during floral bud development using RNA sequencing technology. A total of 547 976 and 2 416 Differentially Expressed Genes(DEGs) were identified in the stage S1, S2 and S3, respectively,and more than 70% of the DEGs were down-regulated in the sterile line. Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed to further understand the functions of these identified DEGs. The results showed that the DEGs were mainly enriched in pathways of starch and sucrose metabolism, pentose and glucuronate interconversions. A number of genes, such as MS1, PME5, ATPB, and lots of transcription factors were found down-regulated in the sterile line, and we also identified a series of genes with large differences in expression patterns between sterile line and maintainer line. Collectively, our findings laid a foundation for further molecular breeding in pepper and provided new insights into its mechanism underlying the male sterility.展开更多
Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultur...Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultural plants,and for identifying hybrid purity(as markers).Here,we constructed a^(60)Co-γF_(2)population from the leaf-yellowing mutant R24 via radiation mutation with the inbred line WT21 of pepper.Genetic analysis showed that the leaf-yellowing of the mutant was controlled by a single recessive gene.By applying the Bulk Segregation Analysis and Kompetitive Allele Specific PCR markers,the leaf-yellowing gene CaLY1(Capsicum annuum Leaf yellow 1)was mapped on chromosome 9,SNP5791587-SNP6011215,with a size of 214.5 kb.One non-synonymous mutated gene Capana09g000166 was found in the interval.The gene encoded a Psb X,which is the core complex of PSⅡ.Transcriptome analysis further showed that 2301 differentially expressed genes were identified under shading treatment for 24 h in R24.The Gene Ontology enrichment pathways were related to photosynthesis light harvesting,cell wall,activity of quercetin 3-O-glucosyltransferase and flavonoid metabolic process,which likely regulate the response of pepper leaves to different light levels.Functional enrichment analysis indicated that the most abundant pathways were photosynthesis antenna proteins and metabolic.展开更多
The stay-green trait is of considerable importance in extending the shelf life of green pepper fruit(Capsicum annuum L.)and in enhancing the appearance of ornamental plants.The study revealed the genetic and regulator...The stay-green trait is of considerable importance in extending the shelf life of green pepper fruit(Capsicum annuum L.)and in enhancing the appearance of ornamental plants.The study revealed the genetic and regulatory mechanisms of the stay-green trait in pepper,which will aid in the selection of ornamental pepper varieties.In this study,a pepper mutant with stay-green fruit named TNX348 was identified from a germplasm resource bank.Two segregating populations were constructed using the stay-green mutant TNX348 and then used in bulked segregant analysis combined with RNA sequencing and linkage analyses.The causal gene of the stay-green trait was mapped to an approximately 131-kb region,and a senescence-induced chloroplast protein gene,CaSGR1(Capana01g000359),was identified as a candidate gene.Sequencing analysis revealed a G→A single-base mutation of CaSGR1 in TNX348 that led to early termination of translation.Based on the single-base mutation,a single nucleotide polymorphism(SNP)marker co-segregating with the stay-green trait was developed.Furthermore,in transcriptome analysis,expression patterns of 11 hormone transduction-related transcription factors,such as abscisic acid-insensitive(ABI),abscisic acidresponsive element-binding factor(ABF),and NAC transcription factor,were similar or opposite to that of CaSGR1.The results indicated that the transcription factors might mediate chlorophyll degradation by regulating the expression of CaSGR1.展开更多
Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of plant hormones.In contrast,the effects of these different plant hormones on the biosynthesis and met...Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of plant hormones.In contrast,the effects of these different plant hormones on the biosynthesis and metabolism of melatonin and their underlying molecular mechanisms are still unclear.In this study,the melatonin biosynthesis pathway was proposed from constructed metabolomic and transcriptomic libraries from hickory(Carya cathayensis Sarg.)nuts.The candidate pathway genes were further identified by phylogenetic analysis,amino-acid sequence alignment,and subcellular localization.Notably,most of the transcription factor-related genes coexpressed with melatonin pathway genes were hormone-responsive genes.Furthermore,dual-luciferase and yeast one‐hybrid assays revealed that CcEIN3(response to ethylene)and CcAZF2(response to abscisic acid)could activate melatonin biosynthesis pathway genes,a tryptophan decarboxylase coding gene(CcTDC1)and an N-acetylserotonin methyltransferase coding gene(CcASMT1),by directly binding to their promoters,respectively.Our results provide a molecular basis for the characterization of novel melatonin biosynthesis regulatory mechanisms and demonstrate for the first time that abscisic acid and ethylene can regulate melatonin biosynthesis.展开更多
Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for t...Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for the fermentation by different microorganisms,but also is a challenge for their systematic utilization.According to the previous literature,4 main functions of vegetable oil and derivative can be summarized,such as carbon source,precursor,inducer and cell protectant during fermentation process.Currently,there is still insufficient knowledge about application of vegetable oil and derivative for high-value-added metabolite production.Therefore,this article firstly presented a comprehensive summary of compositions of vegetable oils and their derivatives,variety of corresponding microbial metabolites,limiting factors and optimization of fermentation process.展开更多
Accumulating data suggest that consuming dietary flaxseed oil(FSO)was a potential strategy for treating diet-induced lipid metabolism disorder(LMD).Effects of FSO on high-fat-diet(HFD)induced LMD and gut microbiota we...Accumulating data suggest that consuming dietary flaxseed oil(FSO)was a potential strategy for treating diet-induced lipid metabolism disorder(LMD).Effects of FSO on high-fat-diet(HFD)induced LMD and gut microbiota were studied in C57/BL6J mice.Results showed that FSO remarkably suppressed body weight gain induced by HFD and also attenuated LMD by decreasing levels of total cholesterol(TC),total triglyceride(TG),lowdensity lipoprotein cholesterol(LDL-C),non-esterified fatty acid(NEFA)and fasting bloodglucose(FBG)in serum.FSO treatment modulated mRNA expression level of genes associated with glucose and lipid metabolism.It regulated gut microbiome at different taxonomic levels by increasing proportions of beneficial Alistipes,Anaeroplasma,Bifidobacterium and inhibiting the growth of insulin resistance or obesity-associated bacteria such as Adlercreutzia,Dorea and Sporosarcina,compared with HFD group.Spearman's correlation analysis suggested that modulation of gut microbiota by FSO were closely related with LMD parameters.These findings might help us to better understand FSO impact on human health.展开更多
Melanin involves in various biological functions, widely used in cosmetic, pharmacology medicine and other fields. However, melanin application is limited due to low productivity and high cost. In this work, melanin e...Melanin involves in various biological functions, widely used in cosmetic, pharmacology medicine and other fields. However, melanin application is limited due to low productivity and high cost. In this work, melanin extraction method from rapeseed meal(RSM) was explored. Effects of hydrochloric acid(HCl) concentration, ethanol concentration, extraction temperature and time, and solid-liquid ratio were evaluated systematically. According to results of single factor experiment and Box-Behnken experiment, the optimum extraction conditions of melanin from RSM were as follows: HCl concentration, 0.5 mol/L; ethanol concentration, 70%; extraction temperature, 40 o C; extraction time, 1 h; solid liquid ratio, 1/4 g/mL. Under these conditions, extraction yields of crude melanin(CM) and purified melanin(PM) were 9.00% and 1.44%, respectively. Compared with synthetic melanin(SM) from Sigma, the relative purities of CM and PM were 7.82% and 29.57%, respectively. Moreover, feedstuff value of RSM residue was also improved after melanin isolation by significantly reducing glucosinolate content.展开更多
Objectives:The Surgical Apgar Score(SAS)can predict the incidence of complications in different surgical fields.However,it is rarely studied in pancreatic cancer.The aim of the present study was to assess the predicti...Objectives:The Surgical Apgar Score(SAS)can predict the incidence of complications in different surgical fields.However,it is rarely studied in pancreatic cancer.The aim of the present study was to assess the predictive value of the SAS in pancreatic ductal adenocarcinoma(PDAC),and then propose a modified SAS which was more suitable for pancreatic cancer patients.Materials and methods:A prospective cohort study of 160 PDAC patients was concluded.The primary endpoint was 30-day major complications.The SAS was calculated as described.The overall discriminatory power of the score was analyzed using receiver operating characteristic curves and the area under the curve(AUC)with respect to major complications or death.Results:It showed a significant predictive value of SAS in major complications or death in PDAC(p=0.020,AUC=0.606),especially in complication of pneumonia(p=0.022)and pleural effusion(p=0.023).In addition,the SAS exert significant predictive value in distal pancreatectomy group,but it has a weak predictive value for pancreaticoduodenectomy group.On multivariable analyses,occurrence of major postoperative complications was associated with lowest mean arterial pressure,estimated blood loss and operative time.Interestingly,as a characteristic of SAS,lowest heart rate was not involved.The modified SAS we proposed including lowest mean arterial pressure,estimated blood loss and operative time increased AUC from 0.606 to 0.743.Conclusions:The SAS can be a simple,rapid scoring system that effectively predicts major postoperative complications.Besides,the modified SAS we proposed in this study,which included lowest mean arterial pressure,estimated blood loss and operative time,exert a better predictive value in PDAC patients.展开更多
Inflammatory bowel disease(IBD)is a chronic,immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier.Due to the poor remission effect and...Inflammatory bowel disease(IBD)is a chronic,immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier.Due to the poor remission effect and severe adverse events associated with current clinical medications,IBD remains an incurable disease.Here,we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating.The molecular coating is composed of o-nitrobenzaldehyde(NB)-modified Gelatin(GelNB),which can strongly bond with-NH_(2)on the intestinal surface of tissue to form a thin biophysical barrier.We found that this molecular coating was able to stay on the surface of the intestine for long periods of time,effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora.In addition,our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration,but also achieved a better outcome of IBD by reducing intestinal inflammation.Moreover,the in vivo experiments showed that the GelNB was better than the classic clinical medication-mesalazine.Therefore,our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD.展开更多
In view of the absence or insufficiency of tropical cyclone(TC) turbulence parameters in current design standards of wind turbines, in this paper, TC turbulence parameter models with roughness length involved are deve...In view of the absence or insufficiency of tropical cyclone(TC) turbulence parameters in current design standards of wind turbines, in this paper, TC turbulence parameter models with roughness length involved are developed based on six landfall TCs observed from meteorological towers located on various underlying surfaces, so as to provide references for the wind turbine design under TC conditions. Firstly, the roughness length values are examined in order to reduce the effect on turbulence parameters of the various underlying surfaces. On this basis, the reference turbulence intensity is normalized by the roughness length. The related turbulence parameters are parameterized, including the turbulence standard deviation and the turbulence spectrum;and the turbulence parameters available under TC conditions for turbulence turbine design are presented finally. Comparisons of the wind parameter models presented in this paper with those used in current turbine design standards suggest that the former can represent TC characteristics more accurately. In order to withstand TCs, we suggest that the turbulence parameter models recommended in this paper be included in future wind turbine design standards under TC conditions.展开更多
In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the dir...In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the direction of the radius toward the center.This dynamic process is associated with two energetically favorable states in an oscillating period of spin waves.In this case,the spin-polarized current plays a role similar to effective perpendicular magnetic anisotropy and decreases the minimum energy in the magnetic system.Our findings provide insight into understanding the dynamic behaviors of topological magnetic textures.展开更多
Dear Editor Pepper belongs to the Solanaceae family, which includes many important vegetable crops such as tomato, potato, and eggplant. Not only widely used as vegetables and spicy ingredients, pepper also has divers...Dear Editor Pepper belongs to the Solanaceae family, which includes many important vegetable crops such as tomato, potato, and eggplant. Not only widely used as vegetables and spicy ingredients, pepper also has diverse applications in pharmaceutics, natural coloring agents, cosmetics, defense repellents, and as ornamental plants (Kim et al., 2014; Qin et al., 2014). Pepper is among the most widely cultivated and consumed vegetables in the world, with annual production reachincl to 38 million tons in 2011 (www.fao.展开更多
The emergence of artificial intelligence has represented great potential in solving a wide range of complex problems.However,traditional general-purpose chips based on von Neumann architectures face the“memory wall”...The emergence of artificial intelligence has represented great potential in solving a wide range of complex problems.However,traditional general-purpose chips based on von Neumann architectures face the“memory wall”problem when applied in artificial intelligence applications.Based on the efficiency of the human brain,many intelligent neuromorphic chips have been proposed to emulate its working mechanism and neuron-synapse structure.With the emergence of spiking-based neuromorphic chips,the computation and energy efficiency of such devices could be enhanced by integrating a variety of features inspired by the biological brain.Aligning with the rapid development of neuromorphic chips,it is of great importance to quickly initiate the investigation of the electromagnetic interference and signal integrity issues related to neuromorphic chips for both CMOS-based and memristor-based artificial intelligence integrated circuits.Here,this paper provides a review of neuromorphic circuit design and algorithms in terms of electromagnetic issues and opportunities with a focus on signal integrity issues,modeling,and optimization.Moreover,the heterogeneous structures of neuromorphic circuits and other circuits,such as memory arrays and sensors using different integration technologies,are also reviewed,and locations where signal integrity might be compromised are discussed.Finally,we provide future trends in electromagnetic interference and signal integrity and outline prospects for upcoming neuromorphic devices.展开更多
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.
基金supported by the National Natural Science Foundation of China(No.82160237)the Key Research and Development Program in Hainan Province(No.ZDYF2023SHFZ104)Natural Science Foundation of Hainan Province(No.822MS210).
文摘Objective Intracranial hemorrhage(ICH),the second most common subtype of stroke,exacerbates the disruption of the blood-brain barrier(BBB),leading to vasogenic edema,plasma protein extravasation,and infiltration of neurotoxic substances.The clearance capacity of the brain plays a crucial role in maintaining BBB homeostasis and facilitating patient recovery after hemorrhage.This study aimed to investigate the effect of circadian rhythms on BBB function,neuronal damage,and clearance capabilities.Methods The transwell model and hemoglobin were co-cultured to simulate the BBB environment after ICH.After intervention with different light groups,neuronal apoptosis was determined,glial phagocytosis was analyzed,the expression of endogenous clearing-related proteins aquaporin 4(AQP4)and low-density lipoprotein receptor-related protein 1(LRP1)was detected by western blotting and immunofluorescence dual standard method,and the expression of the tight junction protein occludin and melatonin receptor 1A(MTNR1A)was quantitatively analyzed.Results Circadian rhythms play a key role in maintaining the integrity of the BBB,reducing oxidative stress-induced neuronal damage,and improving microglial phagocytosis.Meanwhile,the expression of occludin and MTNR1A in neurovascular unit(NVU)co-cultured with hemoglobin improved the expression of AQP4 and LRP1,the key proteins in the NVU's endogenous brain clearance system.Conclusion Circadian rhythm(alternating black and white light)protects the NVU BBB function after ICH,promotes the expression of proteins related to the clearance of the hematoma,provides new evidence for the clinical treatment of patients recovering from ICH,and improves the circadian rhythm to promote brain metabolism and hematoma clearance.
基金This work was supported by China Agriculture Research System(Grant No.CARS-23-G29).
文摘The male-sterile line has been largely used in the hybrid seed production of pepper, which can effectively improve the efficiency of hybrid seed production. However, the formation mechanism of male sterility in pepper remains unclear. In the present study, we compared the gene expression patterns between pepper cytoplasmic male sterile line 9704 A and its maintainer 9704 B during floral bud development using RNA sequencing technology. A total of 547 976 and 2 416 Differentially Expressed Genes(DEGs) were identified in the stage S1, S2 and S3, respectively,and more than 70% of the DEGs were down-regulated in the sterile line. Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed to further understand the functions of these identified DEGs. The results showed that the DEGs were mainly enriched in pathways of starch and sucrose metabolism, pentose and glucuronate interconversions. A number of genes, such as MS1, PME5, ATPB, and lots of transcription factors were found down-regulated in the sterile line, and we also identified a series of genes with large differences in expression patterns between sterile line and maintainer line. Collectively, our findings laid a foundation for further molecular breeding in pepper and provided new insights into its mechanism underlying the male sterility.
基金supported by the earmarked fund for CARS(Grant No.CARS-24-A05)。
文摘Leaf color is directly related to altered photosynthesis.Hence,leaf yellowing mutants can be widely used for the researching plant physiology and functional genomes,for cultivating new varieties of popular horticultural plants,and for identifying hybrid purity(as markers).Here,we constructed a^(60)Co-γF_(2)population from the leaf-yellowing mutant R24 via radiation mutation with the inbred line WT21 of pepper.Genetic analysis showed that the leaf-yellowing of the mutant was controlled by a single recessive gene.By applying the Bulk Segregation Analysis and Kompetitive Allele Specific PCR markers,the leaf-yellowing gene CaLY1(Capsicum annuum Leaf yellow 1)was mapped on chromosome 9,SNP5791587-SNP6011215,with a size of 214.5 kb.One non-synonymous mutated gene Capana09g000166 was found in the interval.The gene encoded a Psb X,which is the core complex of PSⅡ.Transcriptome analysis further showed that 2301 differentially expressed genes were identified under shading treatment for 24 h in R24.The Gene Ontology enrichment pathways were related to photosynthesis light harvesting,cell wall,activity of quercetin 3-O-glucosyltransferase and flavonoid metabolic process,which likely regulate the response of pepper leaves to different light levels.Functional enrichment analysis indicated that the most abundant pathways were photosynthesis antenna proteins and metabolic.
基金supported by Ph D research startup foundation of Hengyang Normal University (Grant No.2020QD17)China Agriculture Research System (Grant No.CARS-23-G-29)
文摘The stay-green trait is of considerable importance in extending the shelf life of green pepper fruit(Capsicum annuum L.)and in enhancing the appearance of ornamental plants.The study revealed the genetic and regulatory mechanisms of the stay-green trait in pepper,which will aid in the selection of ornamental pepper varieties.In this study,a pepper mutant with stay-green fruit named TNX348 was identified from a germplasm resource bank.Two segregating populations were constructed using the stay-green mutant TNX348 and then used in bulked segregant analysis combined with RNA sequencing and linkage analyses.The causal gene of the stay-green trait was mapped to an approximately 131-kb region,and a senescence-induced chloroplast protein gene,CaSGR1(Capana01g000359),was identified as a candidate gene.Sequencing analysis revealed a G→A single-base mutation of CaSGR1 in TNX348 that led to early termination of translation.Based on the single-base mutation,a single nucleotide polymorphism(SNP)marker co-segregating with the stay-green trait was developed.Furthermore,in transcriptome analysis,expression patterns of 11 hormone transduction-related transcription factors,such as abscisic acid-insensitive(ABI),abscisic acidresponsive element-binding factor(ABF),and NAC transcription factor,were similar or opposite to that of CaSGR1.The results indicated that the transcription factors might mediate chlorophyll degradation by regulating the expression of CaSGR1.
基金This work was supported by the National Natural Science Foundation of China(31800563,31670682)the Fundamental Research Funds for the Provincial Universities of Zhejiang(2020YQ003)+1 种基金the Key Research and Development Program of Zhejiang Province(2021C02001)the Young Elite Scientists Sponsorship Program by the China Academy of Space Technology(CAST)(2018QNRC001).
文摘Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of plant hormones.In contrast,the effects of these different plant hormones on the biosynthesis and metabolism of melatonin and their underlying molecular mechanisms are still unclear.In this study,the melatonin biosynthesis pathway was proposed from constructed metabolomic and transcriptomic libraries from hickory(Carya cathayensis Sarg.)nuts.The candidate pathway genes were further identified by phylogenetic analysis,amino-acid sequence alignment,and subcellular localization.Notably,most of the transcription factor-related genes coexpressed with melatonin pathway genes were hormone-responsive genes.Furthermore,dual-luciferase and yeast one‐hybrid assays revealed that CcEIN3(response to ethylene)and CcAZF2(response to abscisic acid)could activate melatonin biosynthesis pathway genes,a tryptophan decarboxylase coding gene(CcTDC1)and an N-acetylserotonin methyltransferase coding gene(CcASMT1),by directly binding to their promoters,respectively.Our results provide a molecular basis for the characterization of novel melatonin biosynthesis regulatory mechanisms and demonstrate for the first time that abscisic acid and ethylene can regulate melatonin biosynthesis.
基金supported by the Natural Science Foundation of Hubei Province (2019CFB378)the Ministry of Science and Technology of the People’s Republic of China (2016YFD0501209)the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI)
文摘Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for the fermentation by different microorganisms,but also is a challenge for their systematic utilization.According to the previous literature,4 main functions of vegetable oil and derivative can be summarized,such as carbon source,precursor,inducer and cell protectant during fermentation process.Currently,there is still insufficient knowledge about application of vegetable oil and derivative for high-value-added metabolite production.Therefore,this article firstly presented a comprehensive summary of compositions of vegetable oils and their derivatives,variety of corresponding microbial metabolites,limiting factors and optimization of fermentation process.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences (1610172019009)the Earmarked Fund for China Agriculture Research System (CARS-14)the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAASASTIP-2013-OCRI)
文摘Accumulating data suggest that consuming dietary flaxseed oil(FSO)was a potential strategy for treating diet-induced lipid metabolism disorder(LMD).Effects of FSO on high-fat-diet(HFD)induced LMD and gut microbiota were studied in C57/BL6J mice.Results showed that FSO remarkably suppressed body weight gain induced by HFD and also attenuated LMD by decreasing levels of total cholesterol(TC),total triglyceride(TG),lowdensity lipoprotein cholesterol(LDL-C),non-esterified fatty acid(NEFA)and fasting bloodglucose(FBG)in serum.FSO treatment modulated mRNA expression level of genes associated with glucose and lipid metabolism.It regulated gut microbiome at different taxonomic levels by increasing proportions of beneficial Alistipes,Anaeroplasma,Bifidobacterium and inhibiting the growth of insulin resistance or obesity-associated bacteria such as Adlercreutzia,Dorea and Sporosarcina,compared with HFD group.Spearman's correlation analysis suggested that modulation of gut microbiota by FSO were closely related with LMD parameters.These findings might help us to better understand FSO impact on human health.
基金supported by Ministry of Science and Technology of the People’s Republic of China (2016YFD0501209)Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-OCRI)
文摘Melanin involves in various biological functions, widely used in cosmetic, pharmacology medicine and other fields. However, melanin application is limited due to low productivity and high cost. In this work, melanin extraction method from rapeseed meal(RSM) was explored. Effects of hydrochloric acid(HCl) concentration, ethanol concentration, extraction temperature and time, and solid-liquid ratio were evaluated systematically. According to results of single factor experiment and Box-Behnken experiment, the optimum extraction conditions of melanin from RSM were as follows: HCl concentration, 0.5 mol/L; ethanol concentration, 70%; extraction temperature, 40 o C; extraction time, 1 h; solid liquid ratio, 1/4 g/mL. Under these conditions, extraction yields of crude melanin(CM) and purified melanin(PM) were 9.00% and 1.44%, respectively. Compared with synthetic melanin(SM) from Sigma, the relative purities of CM and PM were 7.82% and 29.57%, respectively. Moreover, feedstuff value of RSM residue was also improved after melanin isolation by significantly reducing glucosinolate content.
基金This work was supported by the National Natural Science Foundation of China(81772548)Major Research Project of Science Technology Department of Zhejiang Province(2015C03G2010160)Zhejiang Provincial Health and Family Planning Commission Project(2015KYB218 and 2018KY102).
文摘Objectives:The Surgical Apgar Score(SAS)can predict the incidence of complications in different surgical fields.However,it is rarely studied in pancreatic cancer.The aim of the present study was to assess the predictive value of the SAS in pancreatic ductal adenocarcinoma(PDAC),and then propose a modified SAS which was more suitable for pancreatic cancer patients.Materials and methods:A prospective cohort study of 160 PDAC patients was concluded.The primary endpoint was 30-day major complications.The SAS was calculated as described.The overall discriminatory power of the score was analyzed using receiver operating characteristic curves and the area under the curve(AUC)with respect to major complications or death.Results:It showed a significant predictive value of SAS in major complications or death in PDAC(p=0.020,AUC=0.606),especially in complication of pneumonia(p=0.022)and pleural effusion(p=0.023).In addition,the SAS exert significant predictive value in distal pancreatectomy group,but it has a weak predictive value for pancreaticoduodenectomy group.On multivariable analyses,occurrence of major postoperative complications was associated with lowest mean arterial pressure,estimated blood loss and operative time.Interestingly,as a characteristic of SAS,lowest heart rate was not involved.The modified SAS we proposed including lowest mean arterial pressure,estimated blood loss and operative time increased AUC from 0.606 to 0.743.Conclusions:The SAS can be a simple,rapid scoring system that effectively predicts major postoperative complications.Besides,the modified SAS we proposed in this study,which included lowest mean arterial pressure,estimated blood loss and operative time,exert a better predictive value in PDAC patients.
文摘Inflammatory bowel disease(IBD)is a chronic,immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier.Due to the poor remission effect and severe adverse events associated with current clinical medications,IBD remains an incurable disease.Here,we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating.The molecular coating is composed of o-nitrobenzaldehyde(NB)-modified Gelatin(GelNB),which can strongly bond with-NH_(2)on the intestinal surface of tissue to form a thin biophysical barrier.We found that this molecular coating was able to stay on the surface of the intestine for long periods of time,effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora.In addition,our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration,but also achieved a better outcome of IBD by reducing intestinal inflammation.Moreover,the in vivo experiments showed that the GelNB was better than the classic clinical medication-mesalazine.Therefore,our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD.
基金Supported by the National Natural Science Foundation of China(41305007,51678451,and 51778617)
文摘In view of the absence or insufficiency of tropical cyclone(TC) turbulence parameters in current design standards of wind turbines, in this paper, TC turbulence parameter models with roughness length involved are developed based on six landfall TCs observed from meteorological towers located on various underlying surfaces, so as to provide references for the wind turbine design under TC conditions. Firstly, the roughness length values are examined in order to reduce the effect on turbulence parameters of the various underlying surfaces. On this basis, the reference turbulence intensity is normalized by the roughness length. The related turbulence parameters are parameterized, including the turbulence standard deviation and the turbulence spectrum;and the turbulence parameters available under TC conditions for turbulence turbine design are presented finally. Comparisons of the wind parameter models presented in this paper with those used in current turbine design standards suggest that the former can represent TC characteristics more accurately. In order to withstand TCs, we suggest that the turbulence parameter models recommended in this paper be included in future wind turbine design standards under TC conditions.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18E010001)the National Natural Science Foundation of China(Grant Nos.U1704253,and 51471045)the Fundamental Research Funds for the Central Universities(Grant No.N160208001)。
文摘In this study,we investigated the micromagnetic dynamics of kπ-state skyrmions in a magnetic nanodot under a circular spinpolarized current and found an excited spin wave that can propagate persistently along the direction of the radius toward the center.This dynamic process is associated with two energetically favorable states in an oscillating period of spin waves.In this case,the spin-polarized current plays a role similar to effective perpendicular magnetic anisotropy and decreases the minimum energy in the magnetic system.Our findings provide insight into understanding the dynamic behaviors of topological magnetic textures.
基金This work was supported by the National Key Research and Development Program of China (2016YFD0101704), National Science Foundation of China (31470105), and Huazhong Agriculturat University startup fund (2013RC001).
文摘Dear Editor Pepper belongs to the Solanaceae family, which includes many important vegetable crops such as tomato, potato, and eggplant. Not only widely used as vegetables and spicy ingredients, pepper also has diverse applications in pharmaceutics, natural coloring agents, cosmetics, defense repellents, and as ornamental plants (Kim et al., 2014; Qin et al., 2014). Pepper is among the most widely cultivated and consumed vegetables in the world, with annual production reachincl to 38 million tons in 2011 (www.fao.
文摘The emergence of artificial intelligence has represented great potential in solving a wide range of complex problems.However,traditional general-purpose chips based on von Neumann architectures face the“memory wall”problem when applied in artificial intelligence applications.Based on the efficiency of the human brain,many intelligent neuromorphic chips have been proposed to emulate its working mechanism and neuron-synapse structure.With the emergence of spiking-based neuromorphic chips,the computation and energy efficiency of such devices could be enhanced by integrating a variety of features inspired by the biological brain.Aligning with the rapid development of neuromorphic chips,it is of great importance to quickly initiate the investigation of the electromagnetic interference and signal integrity issues related to neuromorphic chips for both CMOS-based and memristor-based artificial intelligence integrated circuits.Here,this paper provides a review of neuromorphic circuit design and algorithms in terms of electromagnetic issues and opportunities with a focus on signal integrity issues,modeling,and optimization.Moreover,the heterogeneous structures of neuromorphic circuits and other circuits,such as memory arrays and sensors using different integration technologies,are also reviewed,and locations where signal integrity might be compromised are discussed.Finally,we provide future trends in electromagnetic interference and signal integrity and outline prospects for upcoming neuromorphic devices.