With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines ...To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.展开更多
The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are diff...The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are difficult to determine the number of key pose frames automatically,and may destroy the postures’ temporal relationships while extracting key frames.To deal with this problem,this paper proposes a new key pose frames extraction method on the basis of 3D space distances of joint points and the improved X-means clustering algorithm.According to the proposed extraction method,the final key pose frame sequence could be obtained by describing the posture of human body with space distance of particular joint points and then the time-constraint X-mean algorithm is applied to cluster and filtrate the posture sequence.The experimental results show that the proposed method can automatically determine the number of key frames and save the temporal characteristics of motion frames according to the motion pose sequence.展开更多
Fluorescence imaging is a non-invasive and highly sensitive bioimaging technique that has shown remarkable strides in plant science. It enables real-time monitoring and analysis of biological and pathological processe...Fluorescence imaging is a non-invasive and highly sensitive bioimaging technique that has shown remarkable strides in plant science. It enables real-time monitoring and analysis of biological and pathological processes in plants by labeling specific molecular or cellular structures with fluorescent probes. However, tissue scattering and phytochrome interference have been obstacles for conventional fluorescence imaging of plants in the ultraviolet and visible spectrum, resulting in unsatisfactory imaging quality. Fortunately, advances in near-infrared(NIR) fluorescence imaging technology(650-900 nm) offer superior spatial-temporal resolution and reduced tissue scattering, which is sure to improve plant imaging quality. In this review, we summarize recent progress in the development of NIR fluorescence imaging probes and their applications for in vivo plant imaging and the identification of plant-related biomolecules. We hope this review provides a new perspective for plant science research and highlights NIR fluorescence imaging as a powerful tool for analyzing plant physiology, adaptive mechanisms, and coping with environmental stress in the near future.展开更多
The creep anisotropy of Ni-based single crystal superalloys was studied at 750 °C/750 MPa. Transmission electron microscopy (TEM) observations showed that stacking faults and micro-twins were the typical dislocat...The creep anisotropy of Ni-based single crystal superalloys was studied at 750 °C/750 MPa. Transmission electron microscopy (TEM) observations showed that stacking faults and micro-twins were the typical dislocation configurations, which all originated from the activity of {111} 〈112〉 slip systems. Then, the orientation rotation caused by the activity of the main {111} 〈112〉 slip system would accelerate the specimen fracturing in shear fracture mode. Furthermore, the orientation rotation would dominate the creep anisotropy. The orientation rotation would occur during the entire creep process, the greater the degree of rotation, the more severe the asynchrony of rotation, which would result in nonuniform deformation and local stress concentration, and exacerbate the failure of the specimen.展开更多
Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life i...Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence. A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, ao<010> superdislocations with low mobil让ies were frequently observed under a lower stress to pass through γ precipitates by a combined slip and climb of two ao<110> superpartials or pure climb. However, ao<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into y precipitates. Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137-174MPa, while the dislocation dim bing mechanism was operative throughout the whole creep stage un der a stress of 120 MPa, resulting a superior creep performanee.展开更多
Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in formi...Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.展开更多
A weak transverse static magnetic field(WTSMF,0–0.5 T)is applied to the directional solidification process of a DD3 Ni-based SX superalloy,aiming to tailor the microstructure and microsegregation of alloys.The mechan...A weak transverse static magnetic field(WTSMF,0–0.5 T)is applied to the directional solidification process of a DD3 Ni-based SX superalloy,aiming to tailor the microstructure and microsegregation of alloys.The mechanisms of microstructural refinement and microsegregation distribution caused by a WTSMF during directional solidification are discussed.It is shown that the primary dendrite arm spacing is rapidly reduced from 181 to 143μm,and the average size ofγ′phase is significantly refined from 0.85 to 0.25μm as the magnetic field increases from 0 to 0.5 T.At the same time,the volumefractions ofγ/γ′eutectic and the segregation coefficient are also gradually decreased.The 3D numerical simulations of the multiscale convection in liquid phase show that the modifications of the microstructure and microsegregation in DD3 are mainly attributed to the enhanced liquid flow caused by thermoelectric magnetic convection(TEMC)at dendrite/sample scale under the WTSMF.The maximum of the TEMC increases with increasing the magnetic field intensity.This work paves a simple way to optimize the microstructure and microsegregation in directionally solidified Ni-based SX superalloys without changing the processing parameters and composition.展开更多
A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom ...A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom probe technology(3D-APT).After standard heat treatment,it was found that Ru addition barely altered the element partitioning coefficient betweenγmatrix andγ′phase,and no element-segregation layer was observed atγ/γ′interface.During the heat exposure at 1100°C,Ru addition obviously promoted the rafting of theγ′precipitates and inhibited the precipitation of topological close-packed(TCP)phases.It was more important that an element-segregation layer containing Re,Co,and Cr was formed in theγmatrix close to theγ/γ′interface due to an“uphill diffusion”effect,and its concentration was obviously reduced after Ru addition.Finally,the microstructural stability based on the element segregation behavior atγ/γ′interface was discussed.This element-segregation layer increased theγ/γ′interfacial energy by increasing the absolute value of the lattice misfit ofγ/γ′interface to promote the rafting of theγ′precipitates after Ru addition.On the other hand,the decrease of the segregation concentration of Re,Co,and Cr elements as TCP phase-forming elements near theγ/γ′interface due to a“reverse partitioning”effect inhibits the precipitation of TCP phases in Ni-based single crystal superalloys after Ru addition.展开更多
Various orientations and diffraction patterns from nanoscale Al precipitates in eutectic Si were investigated by high-resolution transmission electron microscopy combined with transition matrix and stereographic proje...Various orientations and diffraction patterns from nanoscale Al precipitates in eutectic Si were investigated by high-resolution transmission electron microscopy combined with transition matrix and stereographic projection.It was found that the Al precipitates had 12 variants,all orientation relationships can be expressed as:(001)Al//{111}Si,[110]Al//<110>Si.Further,a new diffraction pattern model from Al precipitates was established under[111]Si zone axis,which was in good agreement with the experiment data.The microstructure,adhesion strength and electronic structure of the interface between Al precipitate and Si matrix were studied by first-principles calculation and experimental observation.The results show that the covalent bonds are formed between interfacial Al and Si atoms,which play a key role in interfacial bind strength.Based on the Griffith fracture theory,the cracks tend to form and expand in the interior of Al precipitates firstly,and the interfaces can act as a protective layer to prevent crack propagation.Therefore,the nanoscale Al precipitates will improve the toughness of eutectic Si particles by releasing part of stress through lattice distortion.In addition,the stretched nanoscale Al precipitates can act as effective heterogeneous nucleation sites for high density deformation nanotwins in eutectic Si during deformation,which significantly improved the deformability of eutectic Si.展开更多
4-Hydroxyphenylpyruvate dioxygenase(HPPD)is an important target for both drug and pesticide discovery.As a typical Fe(II)-dependent dioxygenase,HPPD catalyzes the complicated transformation of 4-hydroxyphenylpyruvic a...4-Hydroxyphenylpyruvate dioxygenase(HPPD)is an important target for both drug and pesticide discovery.As a typical Fe(II)-dependent dioxygenase,HPPD catalyzes the complicated transformation of 4-hydroxyphenylpyruvic acid(HPPA)to homogentisic acid(HGA).The binding mode of HPPA in the catalytic pocket of HPPD is a focus of research interests.Recently,we reported the crystal structure of Arabidopsis thaliana HPPD(At HPPD)complexed with HPPA and a cobalt ion,which was supposed to mimic the pre-reactive structure of At HPPD-HPPA-Fe(II).Unexpectedly,the present study shows that the restored At HPPD-HPPA-Fe(II)complex is still nonreactive toward the bound dioxygen.QM/MM and QM calculations reveal that the HPPA resists the electrophilic attacking of the bound dioxygen by the trim of its phenyl ring,and the residue Phe381 plays a key role in orienting the phenyl ring.Kinetic study on the F381 A mutant reveals that the HPPD-HPPA complex observed in the crystal structure should be an intermediate of the substrate transportation instead of the pre-reactive complex.More importantly,the binding mode of the HPPA in this complex is shared with several well-known HPPD inhibitors,suggesting that these inhibitors resist the association of dioxygen(and exert their inhibitory roles)in the same way as the HPPA.The present study provides insights into the inhibition mechanism of HPPD inhibitors.展开更多
Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization...Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization of sodium lignosulfonate and boric acid.By degrading sulfamethoxazole(SMX),CSB-750 obtained 98.7%removal and 81.4%mineralization within 30 min.In comparison with solo S or B doping,S and B co-doped carbon showed the coupling effect for enhanced catalysis.The rate constant(kobs)of 0.1679 min^(-1)was 22.38-and 279.83-fold higher than those of CS-750(0.0075 min^(-1))and CB-750(0.0006 min^(-1)),respectively.The degradation was efficient at strong acidic and weak basic conditions(pH 3-9).Substantial inhibition effect was presented at strong basic condition(pH 10.95)and in presence of CO_(3)^(2-).The CO_(3)^(2-)-caused inhibition was the combined result of the cooperation of pH and quenching O_(2)^(·-).Thiophene sulfur,BC_(3),BC_(2)O,and structural defects were identified as the active sites for PS activation.Radical and nonradical pathways were both involved in the CSB-750/PS/SMX system,where^(1)O_(2)dominated the degradation,SO_(4)^(·-),·OH and direct electron transfer played the subordinate role,and O_(2)^(·-)served as a precursor for the formation of partial^(1)O_(2).The toxicity of degradation system,the effect of real water matrix,and the reusability of carbocatalysts were comprehensively analyzed.Nine possible degradation pathways were proposed.This work focuses on the catalytic performance improvement through the coupling effect of S,B co-doping,and develops an advanced heteroatom doping system to fabricate carbonaceous persulfate activators.展开更多
We reveal here a visible-light promoted phosphorylation of 2-isocyanoaryl thioethers for the first time with concomita nt C(sp3)-S bond cleavage and imidoyl C-S fo rmation.Additionally,this method features the use of ...We reveal here a visible-light promoted phosphorylation of 2-isocyanoaryl thioethers for the first time with concomita nt C(sp3)-S bond cleavage and imidoyl C-S fo rmation.Additionally,this method features the use of 3 mol%organic dye Rose Bengal as the photocatalyst without external transition-metal or peroxide oxidants,and provides a novel and environmentally friendly approach for the preparation of a variety of 2-phosphoryl benzothiazoles in moderate to good yields.展开更多
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.
基金financially supported by the National Natural Science Foundation of China(No.51804084)the Natural Science Foundation of Guangxi Province,China(No.2021GXNSFAA220096)the Science and Technology Major Project of Guangxi Province,China(No.AA17204100)。
文摘To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.
基金Supported by the National Natural Science Foundation of China(61303127)Project of Science and Technology Department of Sichuan Province(2014SZ0223,2014GZ0100,2015GZ0212)+1 种基金Key Program of Education Department of Sichuan Province(11ZA130,13ZA0169)Postgraduate Innovation Fund Project by Southwest University of Science and Technology(15ycx057)
文摘The key pose frames of a human motion pose sequence,play an important role in the compression,retrieval and semantic analysis of continuous human motion.The current available clustering methods in literatures are difficult to determine the number of key pose frames automatically,and may destroy the postures’ temporal relationships while extracting key frames.To deal with this problem,this paper proposes a new key pose frames extraction method on the basis of 3D space distances of joint points and the improved X-means clustering algorithm.According to the proposed extraction method,the final key pose frame sequence could be obtained by describing the posture of human body with space distance of particular joint points and then the time-constraint X-mean algorithm is applied to cluster and filtrate the posture sequence.The experimental results show that the proposed method can automatically determine the number of key frames and save the temporal characteristics of motion frames according to the motion pose sequence.
基金supported by the National Natural Science Foundation of China(U20A2038,22022404,21977036,22074050)the CRI Project of National Research Foundation of Republic of Korea(2018R1A3B1052702)+1 种基金Department of Biotechnology,New Delhi,India,for prestigious DBT-Ramalingaswami fellowship(BT/RLF/Re-entry/59/2018)Science&Engineering Research Board,New Delhi(CRG/2021/002476)。
文摘Fluorescence imaging is a non-invasive and highly sensitive bioimaging technique that has shown remarkable strides in plant science. It enables real-time monitoring and analysis of biological and pathological processes in plants by labeling specific molecular or cellular structures with fluorescent probes. However, tissue scattering and phytochrome interference have been obstacles for conventional fluorescence imaging of plants in the ultraviolet and visible spectrum, resulting in unsatisfactory imaging quality. Fortunately, advances in near-infrared(NIR) fluorescence imaging technology(650-900 nm) offer superior spatial-temporal resolution and reduced tissue scattering, which is sure to improve plant imaging quality. In this review, we summarize recent progress in the development of NIR fluorescence imaging probes and their applications for in vivo plant imaging and the identification of plant-related biomolecules. We hope this review provides a new perspective for plant science research and highlights NIR fluorescence imaging as a powerful tool for analyzing plant physiology, adaptive mechanisms, and coping with environmental stress in the near future.
基金funded by National Natural Science Foundation of China(51771148,52322410,52071263,52031012)Science Center for Gas Turbine Project(P2021-A-IV-001-001)+3 种基金Self-innovation Special Fund Project of Aero Engine Corporation of China(ZZCX-2022-040)The Key Research and Development Program of Shaanxi Province(2023-YBGY-432)Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-03)Innovation Foundation for Doctor Dissertation of Northwestern Poly-technical University,China(CX2021057)。
文摘The creep anisotropy of Ni-based single crystal superalloys was studied at 750 °C/750 MPa. Transmission electron microscopy (TEM) observations showed that stacking faults and micro-twins were the typical dislocation configurations, which all originated from the activity of {111} 〈112〉 slip systems. Then, the orientation rotation caused by the activity of the main {111} 〈112〉 slip system would accelerate the specimen fracturing in shear fracture mode. Furthermore, the orientation rotation would dominate the creep anisotropy. The orientation rotation would occur during the entire creep process, the greater the degree of rotation, the more severe the asynchrony of rotation, which would result in nonuniform deformation and local stress concentration, and exacerbate the failure of the specimen.
基金supported by the National Natural Science Foundation of China (Nos. 51771148, 51331005, 51631008 and 51690163)the National Key Research and Development Program (Nos. 2016YFB0701400 and 2017YFB0702902)Fundamental Research Funds for the Central Universities (Nos. 3102017ZY054 and 3102018jcc009)
文摘Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence. A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, ao<010> superdislocations with low mobil让ies were frequently observed under a lower stress to pass through γ precipitates by a combined slip and climb of two ao<110> superpartials or pure climb. However, ao<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into y precipitates. Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137-174MPa, while the dislocation dim bing mechanism was operative throughout the whole creep stage un der a stress of 120 MPa, resulting a superior creep performanee.
基金financially supported by the National Natural Science Foundation of China(Nos.52130204,52174376,51822405)Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+5 种基金Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)The Youth Innovation Team of Shaanxi UniversitiesJoint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(2020GXLH-Z-024)Key R&D Program of Shaan Xi Province(No.2019ZDLGY 04-04)Fundamental Research Funds for the Central Universities(No.D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056 and CX2021066),China。
文摘Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.
基金financially supported by the National Natural Science Foundation of China(Nos.51690163,52130204,52174376,51822405)the Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)+3 种基金the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(No.2020GXLH-Z-024)the Fundamental Research Funds for the Central Universities(No.D5000210902)the Key R&D Program of ShaanXi Province(No.2019ZDLGY 04-04)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)(No.2019-QZ-02)。
文摘A weak transverse static magnetic field(WTSMF,0–0.5 T)is applied to the directional solidification process of a DD3 Ni-based SX superalloy,aiming to tailor the microstructure and microsegregation of alloys.The mechanisms of microstructural refinement and microsegregation distribution caused by a WTSMF during directional solidification are discussed.It is shown that the primary dendrite arm spacing is rapidly reduced from 181 to 143μm,and the average size ofγ′phase is significantly refined from 0.85 to 0.25μm as the magnetic field increases from 0 to 0.5 T.At the same time,the volumefractions ofγ/γ′eutectic and the segregation coefficient are also gradually decreased.The 3D numerical simulations of the multiscale convection in liquid phase show that the modifications of the microstructure and microsegregation in DD3 are mainly attributed to the enhanced liquid flow caused by thermoelectric magnetic convection(TEMC)at dendrite/sample scale under the WTSMF.The maximum of the TEMC increases with increasing the magnetic field intensity.This work paves a simple way to optimize the microstructure and microsegregation in directionally solidified Ni-based SX superalloys without changing the processing parameters and composition.
基金funded by the National Science and Technol-ogy Major Project(Nos.2017-VI-0002-0072,2019-VI-0020-0135)the National Natural Science Foundation of China(Nos.51771148,52071263,52031012)+2 种基金the Key Research and Development Program of Shaanxi Province(Nos.2020ZDLGY13-02,2023-YBGY-432)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JC-13)the Research Fund of the State Key Labora-tory of Solidification Processing(NPU),China(No.2021-QZ-03).
文摘A new insight into the microstructural stability was proposed in Ni-based single crystal superalloys with Ru addition,and the element segregation behavior atγ/γ′interface was investigated by three-dimensional atom probe technology(3D-APT).After standard heat treatment,it was found that Ru addition barely altered the element partitioning coefficient betweenγmatrix andγ′phase,and no element-segregation layer was observed atγ/γ′interface.During the heat exposure at 1100°C,Ru addition obviously promoted the rafting of theγ′precipitates and inhibited the precipitation of topological close-packed(TCP)phases.It was more important that an element-segregation layer containing Re,Co,and Cr was formed in theγmatrix close to theγ/γ′interface due to an“uphill diffusion”effect,and its concentration was obviously reduced after Ru addition.Finally,the microstructural stability based on the element segregation behavior atγ/γ′interface was discussed.This element-segregation layer increased theγ/γ′interfacial energy by increasing the absolute value of the lattice misfit ofγ/γ′interface to promote the rafting of theγ′precipitates after Ru addition.On the other hand,the decrease of the segregation concentration of Re,Co,and Cr elements as TCP phase-forming elements near theγ/γ′interface due to a“reverse partitioning”effect inhibits the precipitation of TCP phases in Ni-based single crystal superalloys after Ru addition.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.51974258,51674205,51575452)。
文摘Various orientations and diffraction patterns from nanoscale Al precipitates in eutectic Si were investigated by high-resolution transmission electron microscopy combined with transition matrix and stereographic projection.It was found that the Al precipitates had 12 variants,all orientation relationships can be expressed as:(001)Al//{111}Si,[110]Al//<110>Si.Further,a new diffraction pattern model from Al precipitates was established under[111]Si zone axis,which was in good agreement with the experiment data.The microstructure,adhesion strength and electronic structure of the interface between Al precipitate and Si matrix were studied by first-principles calculation and experimental observation.The results show that the covalent bonds are formed between interfacial Al and Si atoms,which play a key role in interfacial bind strength.Based on the Griffith fracture theory,the cracks tend to form and expand in the interior of Al precipitates firstly,and the interfaces can act as a protective layer to prevent crack propagation.Therefore,the nanoscale Al precipitates will improve the toughness of eutectic Si particles by releasing part of stress through lattice distortion.In addition,the stretched nanoscale Al precipitates can act as effective heterogeneous nucleation sites for high density deformation nanotwins in eutectic Si during deformation,which significantly improved the deformability of eutectic Si.
基金supported by the National Key R&D Program(No.2018YFD0200100)National Natural Science Foundation of China(Nos.21837001,21273089,22007035,U20A2038)+3 种基金the Open Project Fund of the Key Laboratory of the Pesticides and Chemical Biology of Central China Normal University(No.2018-A01)the Fundamental Research Funds for the South-Central University for Nationalities(No.CZW20020)the Fundamental Research Funds for the Central Universities(No.KJ02072020-0657)Hubei Province Natural Science Foundation(No.2020CFB487)。
文摘4-Hydroxyphenylpyruvate dioxygenase(HPPD)is an important target for both drug and pesticide discovery.As a typical Fe(II)-dependent dioxygenase,HPPD catalyzes the complicated transformation of 4-hydroxyphenylpyruvic acid(HPPA)to homogentisic acid(HGA).The binding mode of HPPA in the catalytic pocket of HPPD is a focus of research interests.Recently,we reported the crystal structure of Arabidopsis thaliana HPPD(At HPPD)complexed with HPPA and a cobalt ion,which was supposed to mimic the pre-reactive structure of At HPPD-HPPA-Fe(II).Unexpectedly,the present study shows that the restored At HPPD-HPPA-Fe(II)complex is still nonreactive toward the bound dioxygen.QM/MM and QM calculations reveal that the HPPA resists the electrophilic attacking of the bound dioxygen by the trim of its phenyl ring,and the residue Phe381 plays a key role in orienting the phenyl ring.Kinetic study on the F381 A mutant reveals that the HPPD-HPPA complex observed in the crystal structure should be an intermediate of the substrate transportation instead of the pre-reactive complex.More importantly,the binding mode of the HPPA in this complex is shared with several well-known HPPD inhibitors,suggesting that these inhibitors resist the association of dioxygen(and exert their inhibitory roles)in the same way as the HPPA.The present study provides insights into the inhibition mechanism of HPPD inhibitors.
基金financially supported by the GuangDong Basic and Applied Basic Research Foundation(Nos.2019A1515110649,2020A1515110271,2019A1515110244)the National Natural,Science Fund of China(No.51908127)+1 种基金the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2017)the Research Team in Dongguan University of Technology(No.TDYB2019013)。
文摘Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization of sodium lignosulfonate and boric acid.By degrading sulfamethoxazole(SMX),CSB-750 obtained 98.7%removal and 81.4%mineralization within 30 min.In comparison with solo S or B doping,S and B co-doped carbon showed the coupling effect for enhanced catalysis.The rate constant(kobs)of 0.1679 min^(-1)was 22.38-and 279.83-fold higher than those of CS-750(0.0075 min^(-1))and CB-750(0.0006 min^(-1)),respectively.The degradation was efficient at strong acidic and weak basic conditions(pH 3-9).Substantial inhibition effect was presented at strong basic condition(pH 10.95)and in presence of CO_(3)^(2-).The CO_(3)^(2-)-caused inhibition was the combined result of the cooperation of pH and quenching O_(2)^(·-).Thiophene sulfur,BC_(3),BC_(2)O,and structural defects were identified as the active sites for PS activation.Radical and nonradical pathways were both involved in the CSB-750/PS/SMX system,where^(1)O_(2)dominated the degradation,SO_(4)^(·-),·OH and direct electron transfer played the subordinate role,and O_(2)^(·-)served as a precursor for the formation of partial^(1)O_(2).The toxicity of degradation system,the effect of real water matrix,and the reusability of carbocatalysts were comprehensively analyzed.Nine possible degradation pathways were proposed.This work focuses on the catalytic performance improvement through the coupling effect of S,B co-doping,and develops an advanced heteroatom doping system to fabricate carbonaceous persulfate activators.
基金financial support from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB150020)Basic Research Project(Natural Science Foundation for Young Scholars)of Jiangsu Province,China(No.BK20170489,BK20180916)+1 种基金High Level Introduction of Talent Research Start-up Foundation of YZU(No.137011457)China Postdoctoral Science Foundation(No.2019T120471)。
文摘We reveal here a visible-light promoted phosphorylation of 2-isocyanoaryl thioethers for the first time with concomita nt C(sp3)-S bond cleavage and imidoyl C-S fo rmation.Additionally,this method features the use of 3 mol%organic dye Rose Bengal as the photocatalyst without external transition-metal or peroxide oxidants,and provides a novel and environmentally friendly approach for the preparation of a variety of 2-phosphoryl benzothiazoles in moderate to good yields.