Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p...Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.展开更多
A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- ...A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- gent questions and global public health concerns. In this study, epidemiologic characteristics of infected human cases in Jiangsu province were analyzed and risk assessment was undertaken based on the information available. Briefly, it is highly unlikely that a pandemic of human infection with avian influenza A (HTN9) virus will happen in Jiangsu Province in the near future. Iia the end, some measures are recommended to prevent the situation from becoming worse.展开更多
In this paper,we give a systematic description of the 1st Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AI Work Group.Firstly,the framework of ful...In this paper,we give a systematic description of the 1st Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AI Work Group.Firstly,the framework of full channel state information(F-CSI)feedback problem and its corresponding channel dataset are provided.Then the enhancing schemes for DL-based F-CSI feedback including i)channel data analysis and preprocessing,ii)neural network design and iii)quantization enhancement are elaborated.The final competition results composed of different enhancing schemes are presented.Based on the valuable experience of 1stWAIC,we also list some challenges and potential study areas for the design of AI-based wireless communication systems.展开更多
Live poultry markets(LPMs) are crucial places for human infection of influenza A(H7N9 virus).In Yangtze River Delta,LPMs were closed after the outbreak of human infection with avian influenza A(H7N9) virus,and t...Live poultry markets(LPMs) are crucial places for human infection of influenza A(H7N9 virus).In Yangtze River Delta,LPMs were closed after the outbreak of human infection with avian influenza A(H7N9) virus,and then reopened when no case was found.Our purpose was to quantify the effect of LPMs' operations in this region on the transmission of influenza A(H7N9) virus.We obtained information about dates of symptom onset and locations for all human influenza A(H7N9) cases reported from Shanghai,Jiangsu and Zhejiang provinces by May 31,2014,and acquired dates of closures and reopening of LPMs from official media.A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases.A total of 235 cases of influenza A(H7N9) were confirmed in Shanghai,Jiangsu and Zhejiang by May 31,2014.Using these data,our analysis showed that,after LPM closures,the influenza A(H7N9) outbreak disappeared within two weeks in Shanghai,one week in Jiangsu,and one week in Zhejiang,respectively.Local authorities reopened LPMs when there was no outbreak of influenza A(H7N9),which did not lead to reemergence of human influenza A(H7N9).LPM closures were effective in controlling the H7N9 outbreak.Reopening of LPM in summer did not increase the risk of human infection with H7N9.Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM.When there is no outbreak of H7N9 virus,LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry.In the long term,local authorities should take a cautious attitude in permanent LPM closure.展开更多
Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays.However,fabricating elliptical metallic nanohole arrays in large area with highly tu...Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays.However,fabricating elliptical metallic nanohole arrays in large area with highly tunable aspect ratio remains a challenge.Herein,a brand-new method combining stretchable imprinting with colloidal lithography is figured out to fabricate deep-elliptical-silver-nanowell arrays (d-EAgNWAs).In this method,large area highly ordered silicon nanopillar arrays fabricated by colloidal lithography were taken as a master to transfer large area polydimethylsiloxane (PDMS) nanohole arrays.Benefit from the high elasticity of PDMS mold,the aspect ratio of d-EAgNWAs achieved can be facilely regulated from 1.7 to 5.0.Through optimization of polarization direction and the structural parameters including nanowell depth,aspect ratio,and hole size,the sensing performance of d-EAgNWAs was finally improved up to 1,414.1 nm/RlU.The best sensing behaved d-EAgNWAs were employed as an immunoassay platform finally to prove their great potential in label-free biosensing.展开更多
The undesirable enzymatic activity of nanozymes under near neutral p H condition and the traditional single signal output always restrict the analytical application of nanozyme-based biosensors.Herein,graphitic carbon...The undesirable enzymatic activity of nanozymes under near neutral p H condition and the traditional single signal output always restrict the analytical application of nanozyme-based biosensors.Herein,graphitic carbon nitride nanosheets supported palladium nanosheets composite (Pd/g-C_(3)N_(4)) with both oxidase-like activity and fluorescent property is synthesized.Notably,Pd/g-C_(3)N_(4)exhibits enhanced oxidase-like activity compared to Pd NSs under p H 7.4.By combining Pd/g-C_(3)N_(4)with o-phenylenediamine(OPD),a ratiometric fluorescence assay for acetylcholinesterase (ACh E) activity detection is developed.Pd/g-C_(3)N_(4)can catalyze oxidation of nonfluorescent OPD to fluorescent oxidized OPD (ox OPD,Em=565nm),which can quench fluorescence of g-C_(3)N_(4)supporter (Em=441 nm) through fluorescence resonance energy transfer (FRET).However,in presence of ACh E,acetylthiocholine can be hydrolyzed into thiocholine,which will block the oxidase-like activity of Pd/g-C_(3)N_(4)and then hamper the FRET process.This ratiometric fluorescence assay is also viable to screen ACh E inhibitor.This work will guide design of ratiometric fluorescence assay based on nanozymes with improved enzymatic activity.展开更多
Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstand...Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstanding sensitivity afforded by deep metallic nanowells (up to 400 nm in depth). Using gold nanohole arrays as a mask, a silicon substrate was etched into deep silicon nanowells, which acted as a template for subsequent Ag deposition, resulting in the formation of d-AgNWAs. Various geometric parameters were separately tailored to study the changes in the optical performance and further optimize the sensing ability of the structure. After several rounds of selection, the best sensing d-AgNWA, which had a Ag thickness of 400 nm, template depth of 400 nm, hole diameter of 504 nm, and period of 1 ~m, was selected. It had a sensitivity of 933 nm.RIU-1, which is substantially higher than those of most common thin metallic nanohole arrays. As a proof of concept, the as-prepared structure was employed as a substrate for an antigen-antibody recognition immunoassay, which indicates its great potential for label-free real-time biosensing.展开更多
Electrochemical synthesis of hydrogen peroxide(H_(2)O_(2))through two-electron oxygen reduction represents an attractive alternative for on-site H_(2)O_(2) generation.Here,we develop a facile thermally activatedpersul...Electrochemical synthesis of hydrogen peroxide(H_(2)O_(2))through two-electron oxygen reduction represents an attractive alternative for on-site H_(2)O_(2) generation.Here,we develop a facile thermally activatedpersulfate approach to obtain oxidized carbon nanotubes(O-CNTs-x,x represents oxidation time)with enhanced H_(2)O_(2) electrosynthesis performance.Electrochemical studies have demonstrated that the optimized O-CNTs-6(i.e.,oxidation time is 6 h)could deliver a sustained high selectivity of around 92%for H_(2)O_(2) over a wide voltage window in 0.1 mol/L KOH and a high H_(2)O_(2) production rate of 296.84 mmol/L g^(-1) cat h^(-1).Compared with pristine CNTs,the enhanced catalytic activity primarily stems from the newly-generated oxygen-containing functional groups and some defects created on the surface of O-CNTs-x.Importantly,the proposed oxidation process is proved to be valid for promoting H_(2)O_(2) electrosynthesis performance of the Ketjen black.This study provides an universal oxidation method to obtain highly active carbon-based catalysts and initiates new opportunities for the exploration of highperformance electrosynthesis H_(2)O_(2) catalysts.展开更多
We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer ...We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag~. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.展开更多
Introduction:Many measures implemented to control the coronavirus disease 2019(COVID-19)pandemic have reshaped the epidemic patterns of other infectious diseases.This study estimated the impact of the COVID-19 pandemi...Introduction:Many measures implemented to control the coronavirus disease 2019(COVID-19)pandemic have reshaped the epidemic patterns of other infectious diseases.This study estimated the impact of the COVID-19 pandemic on respiratory and intestinal infectious diseases and potential changes following reopening.Methods:The optimal intervention and counterfactual models were selected from the seasonal autoregressive integrated moving average(SARIMA),neural network autoregression(NNAR),and hybrid models based on the minimum mean absolute percentage error(MAPE)in the test set.The relative change rate between the actual notification rate and that predicted by the optimal model was calculated for the entire COVID-19 epidemic prevention period and the“reopening”period.Results:Compared with the predicted notification rate based on the counterfactual model,the total relative change rates for the 9 infectious diseases were−44.24%,respiratory infections(−55.41%),and intestinal infections(−26.59%)during 2020–2022.Compared with the predicted notification rate based on the intervention model,the total relative change rates were+247.98%,respiratory infections(+389.59%),and intestinal infections(+50.46%)in 2023.Among them,the relative increases in influenza(+499.98%)and hand-foot-mouth disease(HFMD)(+70.97%)were significant.Conclusions:Measures taken in Jiangsu Province in response to COVID-19 effectively constrained the spread of respiratory and intestinal infectious diseases.Influenza and HFMD rebounded significantly after the lifting of COVID-19 intervention restrictions.展开更多
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金financially supported by the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the National Natural Science Foundation of China(21975154,22179078)+1 种基金the Postdoctoral Science Foundation of China(2018M63074)Qingdao Post-doctoral Applied Research Project(QDBSH20220202040)。
文摘Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.
基金supported by the Jiangsu Province Health Development Project with Science and Education (No.ZX201109 and RC2011085)the Research Projects of Jiangsu Preventive Medicine (No.YZ201020)
文摘A novel avian influenza A (H7N9) virus was discovered in February 2013 in China and has resulted in more than 100 comfirmed human infections including 26 fatal cases as of May 2, 2013. The situation raises many ur- gent questions and global public health concerns. In this study, epidemiologic characteristics of infected human cases in Jiangsu province were analyzed and risk assessment was undertaken based on the information available. Briefly, it is highly unlikely that a pandemic of human infection with avian influenza A (HTN9) virus will happen in Jiangsu Province in the near future. Iia the end, some measures are recommended to prevent the situation from becoming worse.
文摘In this paper,we give a systematic description of the 1st Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AI Work Group.Firstly,the framework of full channel state information(F-CSI)feedback problem and its corresponding channel dataset are provided.Then the enhancing schemes for DL-based F-CSI feedback including i)channel data analysis and preprocessing,ii)neural network design and iii)quantization enhancement are elaborated.The final competition results composed of different enhancing schemes are presented.Based on the valuable experience of 1stWAIC,we also list some challenges and potential study areas for the design of AI-based wireless communication systems.
文摘Live poultry markets(LPMs) are crucial places for human infection of influenza A(H7N9 virus).In Yangtze River Delta,LPMs were closed after the outbreak of human infection with avian influenza A(H7N9) virus,and then reopened when no case was found.Our purpose was to quantify the effect of LPMs' operations in this region on the transmission of influenza A(H7N9) virus.We obtained information about dates of symptom onset and locations for all human influenza A(H7N9) cases reported from Shanghai,Jiangsu and Zhejiang provinces by May 31,2014,and acquired dates of closures and reopening of LPMs from official media.A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases.A total of 235 cases of influenza A(H7N9) were confirmed in Shanghai,Jiangsu and Zhejiang by May 31,2014.Using these data,our analysis showed that,after LPM closures,the influenza A(H7N9) outbreak disappeared within two weeks in Shanghai,one week in Jiangsu,and one week in Zhejiang,respectively.Local authorities reopened LPMs when there was no outbreak of influenza A(H7N9),which did not lead to reemergence of human influenza A(H7N9).LPM closures were effective in controlling the H7N9 outbreak.Reopening of LPM in summer did not increase the risk of human infection with H7N9.Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM.When there is no outbreak of H7N9 virus,LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry.In the long term,local authorities should take a cautious attitude in permanent LPM closure.
基金National Natural Science Foundation of China (No. 51433003)National Key Research and Development Program of China (No. 2016YFB0401701)JLU Science and Technology Innovative Research Team 2017TD-06.
文摘Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays.However,fabricating elliptical metallic nanohole arrays in large area with highly tunable aspect ratio remains a challenge.Herein,a brand-new method combining stretchable imprinting with colloidal lithography is figured out to fabricate deep-elliptical-silver-nanowell arrays (d-EAgNWAs).In this method,large area highly ordered silicon nanopillar arrays fabricated by colloidal lithography were taken as a master to transfer large area polydimethylsiloxane (PDMS) nanohole arrays.Benefit from the high elasticity of PDMS mold,the aspect ratio of d-EAgNWAs achieved can be facilely regulated from 1.7 to 5.0.Through optimization of polarization direction and the structural parameters including nanowell depth,aspect ratio,and hole size,the sensing performance of d-EAgNWAs was finally improved up to 1,414.1 nm/RlU.The best sensing behaved d-EAgNWAs were employed as an immunoassay platform finally to prove their great potential in label-free biosensing.
基金supported by the Natural Science Foundation of Shandong Province (Nos.ZR2020QB033 and ZR2019YQ10)the National Natural Science Foundation of China (Nos.21904048,21974132,21902061 and 21902062)the Young Taishan Scholars Program (No.tsqn201812080)。
文摘The undesirable enzymatic activity of nanozymes under near neutral p H condition and the traditional single signal output always restrict the analytical application of nanozyme-based biosensors.Herein,graphitic carbon nitride nanosheets supported palladium nanosheets composite (Pd/g-C_(3)N_(4)) with both oxidase-like activity and fluorescent property is synthesized.Notably,Pd/g-C_(3)N_(4)exhibits enhanced oxidase-like activity compared to Pd NSs under p H 7.4.By combining Pd/g-C_(3)N_(4)with o-phenylenediamine(OPD),a ratiometric fluorescence assay for acetylcholinesterase (ACh E) activity detection is developed.Pd/g-C_(3)N_(4)can catalyze oxidation of nonfluorescent OPD to fluorescent oxidized OPD (ox OPD,Em=565nm),which can quench fluorescence of g-C_(3)N_(4)supporter (Em=441 nm) through fluorescence resonance energy transfer (FRET).However,in presence of ACh E,acetylthiocholine can be hydrolyzed into thiocholine,which will block the oxidase-like activity of Pd/g-C_(3)N_(4)and then hamper the FRET process.This ratiometric fluorescence assay is also viable to screen ACh E inhibitor.This work will guide design of ratiometric fluorescence assay based on nanozymes with improved enzymatic activity.
基金This work was financially supported by the National Basic Research Program of China (973 program, No. 2012CB933800) and the National Natural Science Foundation of China (NSFC, No. 91123031).
文摘Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstanding sensitivity afforded by deep metallic nanowells (up to 400 nm in depth). Using gold nanohole arrays as a mask, a silicon substrate was etched into deep silicon nanowells, which acted as a template for subsequent Ag deposition, resulting in the formation of d-AgNWAs. Various geometric parameters were separately tailored to study the changes in the optical performance and further optimize the sensing ability of the structure. After several rounds of selection, the best sensing d-AgNWA, which had a Ag thickness of 400 nm, template depth of 400 nm, hole diameter of 504 nm, and period of 1 ~m, was selected. It had a sensitivity of 933 nm.RIU-1, which is substantially higher than those of most common thin metallic nanohole arrays. As a proof of concept, the as-prepared structure was employed as a substrate for an antigen-antibody recognition immunoassay, which indicates its great potential for label-free real-time biosensing.
基金supported by the National Natural Science Foundation of China(21902062 and 21705056)the Young Taishan Scholars Program(tsqn201812080)the Natural Science Foundation of Shandong Province(ZR2019YQ10).
文摘Electrochemical synthesis of hydrogen peroxide(H_(2)O_(2))through two-electron oxygen reduction represents an attractive alternative for on-site H_(2)O_(2) generation.Here,we develop a facile thermally activatedpersulfate approach to obtain oxidized carbon nanotubes(O-CNTs-x,x represents oxidation time)with enhanced H_(2)O_(2) electrosynthesis performance.Electrochemical studies have demonstrated that the optimized O-CNTs-6(i.e.,oxidation time is 6 h)could deliver a sustained high selectivity of around 92%for H_(2)O_(2) over a wide voltage window in 0.1 mol/L KOH and a high H_(2)O_(2) production rate of 296.84 mmol/L g^(-1) cat h^(-1).Compared with pristine CNTs,the enhanced catalytic activity primarily stems from the newly-generated oxygen-containing functional groups and some defects created on the surface of O-CNTs-x.Importantly,the proposed oxidation process is proved to be valid for promoting H_(2)O_(2) electrosynthesis performance of the Ketjen black.This study provides an universal oxidation method to obtain highly active carbon-based catalysts and initiates new opportunities for the exploration of highperformance electrosynthesis H_(2)O_(2) catalysts.
文摘We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag~. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.
基金supported by grants from the Jiangsu Provincial Medical Key Discipline(No.ZDXK202250)the Scientific Research Project of Jiangsu Provincial Health Commission(No.DX202302)+1 种基金National Natural Science Foun dation of China(No.82320108018)National Key R&D Program of China(Nos.2023YFC2306004,2022YFC2304000).
文摘Introduction:Many measures implemented to control the coronavirus disease 2019(COVID-19)pandemic have reshaped the epidemic patterns of other infectious diseases.This study estimated the impact of the COVID-19 pandemic on respiratory and intestinal infectious diseases and potential changes following reopening.Methods:The optimal intervention and counterfactual models were selected from the seasonal autoregressive integrated moving average(SARIMA),neural network autoregression(NNAR),and hybrid models based on the minimum mean absolute percentage error(MAPE)in the test set.The relative change rate between the actual notification rate and that predicted by the optimal model was calculated for the entire COVID-19 epidemic prevention period and the“reopening”period.Results:Compared with the predicted notification rate based on the counterfactual model,the total relative change rates for the 9 infectious diseases were−44.24%,respiratory infections(−55.41%),and intestinal infections(−26.59%)during 2020–2022.Compared with the predicted notification rate based on the intervention model,the total relative change rates were+247.98%,respiratory infections(+389.59%),and intestinal infections(+50.46%)in 2023.Among them,the relative increases in influenza(+499.98%)and hand-foot-mouth disease(HFMD)(+70.97%)were significant.Conclusions:Measures taken in Jiangsu Province in response to COVID-19 effectively constrained the spread of respiratory and intestinal infectious diseases.Influenza and HFMD rebounded significantly after the lifting of COVID-19 intervention restrictions.