Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-pla...Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.展开更多
Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fati...Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory.Firstly,the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS.The damage model parameters were determined by fatigue tests,and the reliability of fatigue life simulation results of the Ti_(2)AlNb alloy standard open-hole specimen was verified.Meanwhile,the fatigue life of Ti_(2)AlNb alloy Y-section subcomponents was predicted.Under the same initial conditions,the average error of fatigue life predicted by two different models was 20.6%.Finally,the effects of loading amplitude,temperature,and Y-interface angle on fatigue properties of Ti_(2)AlNb Y-section subcomponents were investigated.These results provide a new idea for evaluating the fatigue life of various Ti_(2)AlNb alloy subcomponents.展开更多
Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-b...Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites.展开更多
The effects of equipment parameters of batch distillation column on the yield proportion are discussed and analyzed, the relations between maximal yield proportion and the column equipment parameters are correlated, w...The effects of equipment parameters of batch distillation column on the yield proportion are discussed and analyzed, the relations between maximal yield proportion and the column equipment parameters are correlated, which not only can be used to appraise rationality of the design parameters of the columns being employed and which but also can be used to new batch distillation column design. Under the assistance of the separation difficulty defined in this paper, the minimum number of theoretical plates is determined by the limit loss proportion method given, and further the actual number of theoretical plates and the height for the batch distillation are calculated by using the redundancy coefficient found to complete the whole design of the batch distillation as shown in the computational sample. Research showed that the actual number of theoretical plates and the height of batch distillation column with the column diameter 0.6 m are 17 and 5.1 m in alcohol mixture separation system of the sample proposed. Moreover, the approach can be extended to the design of batch distillation column with a separation system of multi-component liquid mixture after those adjacent components are treated as numerous binary component systems.展开更多
Finite supply of non-regenerative resources triggers a competition between economic entities or between areas, which requires the ways regarding their utilization with higher levels in science and the standards regard...Finite supply of non-regenerative resources triggers a competition between economic entities or between areas, which requires the ways regarding their utilization with higher levels in science and the standards regarding their use with higher efficiency in economics. To solve a problem of process evaluation in science and of driving force in economics during a process design or a process run for natural resources utilization, a process evaluation parameter originated from natural gas hydrate preparation from a small scale to industrialization scale and the equation of the criterion dependent are introduced to evaluate a variety of processes of natural resources utilization. The analyses indicate that the parameter is relevant to internal undeveloped resources amount change with a stable mass composition in a virtual black box model and external variable market with an implication of process efficiency in economy or of process efficiency of resource utilization and that the parameter has similar features of the thermodynamic state functions. Moreover, the equation of the criterion provided is a difference between the value of the process evaluation parameter at the final state and the value of the process evaluation parameter at the initial state in an actual process, which can be used to determine the direction of development and to judge the size of the driving force in an actual process or an economical run. The provided examples and correlative mathematical description can guide how an identification for the undeveloped resources and a real-time adjustment of dynamic production for the developing resource are done and how decisions regarding resource exploitation, the venture forecasting of capital utilization and updating technology are made. The parameter used itself and the equation of the derived criterion can help by playing a predictive role for selecting the optimal use processes and for designing new process of the natural resource utilization or capital use, and by playing a practical role for adjusting factual production status and for improving the actual process of the utilization of resource or capital in an economic society. Finally, those closed resource systems having accumulation or depletion of the resources or a variable mass such as a decomposition system, a fission system and a biological reproduction system will become possible future research objectives under the guide of this work.展开更多
基金financial support from the National Natural Science Foundation of China(11232008,11372118,and 11672345)the Natural Science Foundation of Jiangsu Province(BK20161341)the Six Talent Peaks Project in Jiangsu Province(2016-HKHT-004)
文摘Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures.
基金the financial support provided by the National Science and TechnologyMajor Project(No.J2019-VI-0003-0116)the Six Talent Peaks Project in Jiangsu Province(Grant No.2019-KTHY-059).
文摘Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory.Firstly,the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS.The damage model parameters were determined by fatigue tests,and the reliability of fatigue life simulation results of the Ti_(2)AlNb alloy standard open-hole specimen was verified.Meanwhile,the fatigue life of Ti_(2)AlNb alloy Y-section subcomponents was predicted.Under the same initial conditions,the average error of fatigue life predicted by two different models was 20.6%.Finally,the effects of loading amplitude,temperature,and Y-interface angle on fatigue properties of Ti_(2)AlNb Y-section subcomponents were investigated.These results provide a new idea for evaluating the fatigue life of various Ti_(2)AlNb alloy subcomponents.
基金support provided by the National Natural Science Foundation of China(Grant No.11872025)and the Six Talent Peaks Project in Jiangsu Province(Grant No.2019-KTHY-059).
文摘Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites.
文摘The effects of equipment parameters of batch distillation column on the yield proportion are discussed and analyzed, the relations between maximal yield proportion and the column equipment parameters are correlated, which not only can be used to appraise rationality of the design parameters of the columns being employed and which but also can be used to new batch distillation column design. Under the assistance of the separation difficulty defined in this paper, the minimum number of theoretical plates is determined by the limit loss proportion method given, and further the actual number of theoretical plates and the height for the batch distillation are calculated by using the redundancy coefficient found to complete the whole design of the batch distillation as shown in the computational sample. Research showed that the actual number of theoretical plates and the height of batch distillation column with the column diameter 0.6 m are 17 and 5.1 m in alcohol mixture separation system of the sample proposed. Moreover, the approach can be extended to the design of batch distillation column with a separation system of multi-component liquid mixture after those adjacent components are treated as numerous binary component systems.
文摘Finite supply of non-regenerative resources triggers a competition between economic entities or between areas, which requires the ways regarding their utilization with higher levels in science and the standards regarding their use with higher efficiency in economics. To solve a problem of process evaluation in science and of driving force in economics during a process design or a process run for natural resources utilization, a process evaluation parameter originated from natural gas hydrate preparation from a small scale to industrialization scale and the equation of the criterion dependent are introduced to evaluate a variety of processes of natural resources utilization. The analyses indicate that the parameter is relevant to internal undeveloped resources amount change with a stable mass composition in a virtual black box model and external variable market with an implication of process efficiency in economy or of process efficiency of resource utilization and that the parameter has similar features of the thermodynamic state functions. Moreover, the equation of the criterion provided is a difference between the value of the process evaluation parameter at the final state and the value of the process evaluation parameter at the initial state in an actual process, which can be used to determine the direction of development and to judge the size of the driving force in an actual process or an economical run. The provided examples and correlative mathematical description can guide how an identification for the undeveloped resources and a real-time adjustment of dynamic production for the developing resource are done and how decisions regarding resource exploitation, the venture forecasting of capital utilization and updating technology are made. The parameter used itself and the equation of the derived criterion can help by playing a predictive role for selecting the optimal use processes and for designing new process of the natural resource utilization or capital use, and by playing a practical role for adjusting factual production status and for improving the actual process of the utilization of resource or capital in an economic society. Finally, those closed resource systems having accumulation or depletion of the resources or a variable mass such as a decomposition system, a fission system and a biological reproduction system will become possible future research objectives under the guide of this work.