With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which co...With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which could change their configurations and end effectors for different tasks.The reconfigurable connecting mechanism(RCM)is a core component of reconfigurable robots.In this paper,two types of intelligent modularized RCMs with light weight,high payload,and large pose(position and attitude)error tolerance are developed.One is driven by shape memory alloy(SMA)and recovery spring.It is locked by steel balls and key.The other is driven by electromagnetic coil and locked by permanent magnet and key.The locking principle,mechanical system and control system of the two RCMs are detailed introduced.Both of them meet the requirements of high precision and high payload in the industrial field.Finally,the developed RCMs are respectively integrated to a practical robot and experimented.The experiment results verified the performance of the two RCMs.展开更多
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr...Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.展开更多
A cable-driven redundant manipulator has significant potential in confined space applications, such as environmental exploration, equipment monitoring, or maintenance. A traditional design requires 3N driving motors/c...A cable-driven redundant manipulator has significant potential in confined space applications, such as environmental exploration, equipment monitoring, or maintenance. A traditional design requires 3N driving motors/cables to supply 2N degrees of freedom(DOF) movement ability.The number of motors is 1.5 times that of the joints’ DOF, increasing the hardware cost and the complexity of the kinematics, dynamics, and control. This study develops a novel redundant space manipulator with decoupled cable-driven joints and segmented linkages. It is a 1680 mm continuum manipulator with eight DOF, consisting of four segmented linkages driven by eight motors/pairs of cables. Each segment has two equivalent DOF, which are realized by four quaternion joints synchronously driven by two linkage cables. The linkage cables of adjacent joints are symmetrically decoupled and offset at 180°. This design allows equal-angle movement of all the joints of each segment. Moreover, each decoupling driving mechanism is designed based on a pulley block composed of two fixed and movable pulleys. The two movable pulleys realize the opposite but equidistant motions of the two driving cables, i.e., pulling and loosening, assuring symmetrical movements of the two driving cables of each segment. Consequently, the equivalent 2N-DOF joints are driven only by 2N motors, significantly reducing the hardware cost and simplifying the mapping relationship between the motor angle/cable length and the joint angle. Furthermore, the bending range of each segment could reach 360°, which is three times that of a traditional design. Finally, a prototype has been developed and experimented with to verify the performance of the proposed mechanism and the corresponding algorithms.展开更多
The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbl...The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbling, bringing great challenge to capture and remove it. In this paper, a dual-arm coordinated ‘‘Area-Oriented Capture'(AOC) method is proposed to capture a non-cooperative tumbling target. Firstly, the motion equation of the tumbling target is established, based on which, the dynamic properties are analyzed. Then, the ‘‘Area-Oriented Capture'concept is presented to deal with the problem of large pose(position and attitude) deviation and tumbling motion. An area rather than fixed points/devices is taken as the object to be tracked and captured. As long as the manipulators’ end-effectors move to a specified range of the objective areas(not fixed points on the target, but areas), the target satellite will be hugged by the two arms.At last, the proposed method and the traditional method(i.e. fixed-point oriented capture method)are compared and analyzed through simulation. The results show that the proposed method has larger pose tolerance and takes shorter time for capturing a tumbling target.展开更多
Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight con...Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system.展开更多
In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator,this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg.It ado...In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator,this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg.It adopts the EtherCAT communication protocol and has the characteristics of high load-to-weight ratio.In order to achieve constant force tracking under the condition of unknown environmental parameters,an integral adaptive admittance control method is proposed.The control law is expressed as a third-order linear system equation,the operating environment is equivalent to a spring model,and the control error transfer function is derived.The control performance under the step response is further analyzed.The simulation results show that the proposed integral adaptive admittance control method has better performance than the traditional method.It has no steady-state error,overcomes the problems caused by nonlinear discrete compensation,and can facilitate analysis in the frequency domain,realize parameter optimization,and improve calculation accuracy.展开更多
Inspired by large and medium-sized birds,two kinds of flapping-wing flying robots with wingspans beyond 2 meters were developed.They have the appearance of a hawk and a phoenix respectively,so they are called HIT-Hawk...Inspired by large and medium-sized birds,two kinds of flapping-wing flying robots with wingspans beyond 2 meters were developed.They have the appearance of a hawk and a phoenix respectively,so they are called HIT-Hawk and HIT-Phoenix.In this paper,the bionic concept,theoretical analysis,design and manufacturing are introduced in detail.Firstly,the flight principle and characteristics of large and medium-sized birds were summarized.Then,the aerodynamics was modeled based on the thin airfoil theory,and the main design basis was established.Secondly,the mechanical structures of HIT-Hawk and HIT-Phoenix were designed to ensure the lateral and longitudinal stability and have optimized flight performance.Moreover,an autonomous flight control method was proposed and realized in highly integrated on-onboard controller;it satisfies the strict restrictions on mass,size,power and shape.Finally,the prototypes were fabricated and verified through practical flight experiments.The wingspans of these two flapping wing aircrafts are 2.0 m and 2.3 m respectively,the take-off weights are 1.15 kg and 0.86 kg,and the maximum stable endurance is 65 min(with battery of 3S LiPo,4300 mAh)and 8 min(with battery of 3S LiPo,800 mAh).Their wind resistance can both reach level 4.Compared with the small and micro flapping-wing aerial vehicles that mimic insects or small birds,they both have strong load capacity,strong wind resistance and long endurance.展开更多
基金Supported by National Key R&D Program of China(Grant No.2018YFB1304600)Guangdong Provincial Key Research and Development Program of China(Grant No.2019B090915001)+1 种基金Guangdong Provincial Special Support Program of China(Grant No.2017TX04X0071)Basic Research Program of Shenzhen City(Grant No.JCYJ20180507183610564).
文摘With the development of intelligent flexible manufacturing,traditional industrial manipulators with a single configuration are difficult to meet a variety of tasks.Reconfigurable robots have developed rapidly which could change their configurations and end effectors for different tasks.The reconfigurable connecting mechanism(RCM)is a core component of reconfigurable robots.In this paper,two types of intelligent modularized RCMs with light weight,high payload,and large pose(position and attitude)error tolerance are developed.One is driven by shape memory alloy(SMA)and recovery spring.It is locked by steel balls and key.The other is driven by electromagnetic coil and locked by permanent magnet and key.The locking principle,mechanical system and control system of the two RCMs are detailed introduced.Both of them meet the requirements of high precision and high payload in the industrial field.Finally,the developed RCMs are respectively integrated to a practical robot and experimented.The experiment results verified the performance of the two RCMs.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.62233001)Shenzhen excellent scientific and technological innovation talent training project(Grant No.RCJC20200714114436040)the Basic Research Program of Shenzhen(Grant No.JCYJ20190806142816524).
文摘Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.
基金supported by the National Natural Science Foundation of China(Grant No.62233001)Program of Shenzhen Peacock Innovation Team(Grant No.KQTD20210811090146075)Shenzhen Excellent Scientific and Technological Innovation Talent Training Project(Grant No.RCJC20200714114436040).
文摘A cable-driven redundant manipulator has significant potential in confined space applications, such as environmental exploration, equipment monitoring, or maintenance. A traditional design requires 3N driving motors/cables to supply 2N degrees of freedom(DOF) movement ability.The number of motors is 1.5 times that of the joints’ DOF, increasing the hardware cost and the complexity of the kinematics, dynamics, and control. This study develops a novel redundant space manipulator with decoupled cable-driven joints and segmented linkages. It is a 1680 mm continuum manipulator with eight DOF, consisting of four segmented linkages driven by eight motors/pairs of cables. Each segment has two equivalent DOF, which are realized by four quaternion joints synchronously driven by two linkage cables. The linkage cables of adjacent joints are symmetrically decoupled and offset at 180°. This design allows equal-angle movement of all the joints of each segment. Moreover, each decoupling driving mechanism is designed based on a pulley block composed of two fixed and movable pulleys. The two movable pulleys realize the opposite but equidistant motions of the two driving cables, i.e., pulling and loosening, assuring symmetrical movements of the two driving cables of each segment. Consequently, the equivalent 2N-DOF joints are driven only by 2N motors, significantly reducing the hardware cost and simplifying the mapping relationship between the motor angle/cable length and the joint angle. Furthermore, the bending range of each segment could reach 360°, which is three times that of a traditional design. Finally, a prototype has been developed and experimented with to verify the performance of the proposed mechanism and the corresponding algorithms.
基金supported by the National Natural Science Foundation of China (No. U1613227)Guangdong Special Support Program (No. 2017TX04X0071)+1 种基金Self-Planned Task of State Key Labora-tory of Robotics and System (HIT) (No. SKLRS201817B)Shenzhen Key Lab Fund of Mechanisms and Control in Aerospace (No. ZDSYS201703031002066)
文摘The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbling, bringing great challenge to capture and remove it. In this paper, a dual-arm coordinated ‘‘Area-Oriented Capture'(AOC) method is proposed to capture a non-cooperative tumbling target. Firstly, the motion equation of the tumbling target is established, based on which, the dynamic properties are analyzed. Then, the ‘‘Area-Oriented Capture'concept is presented to deal with the problem of large pose(position and attitude) deviation and tumbling motion. An area rather than fixed points/devices is taken as the object to be tracked and captured. As long as the manipulators’ end-effectors move to a specified range of the objective areas(not fixed points on the target, but areas), the target satellite will be hugged by the two arms.At last, the proposed method and the traditional method(i.e. fixed-point oriented capture method)are compared and analyzed through simulation. The results show that the proposed method has larger pose tolerance and takes shorter time for capturing a tumbling target.
基金supported by the National Natural Science Foundation of China(No.U1613227,61803125)Guangdong Special Support Program of China(No.2017TX04X0071)the Basic Research Program of Shenzhen of China(Nos.JCYJ20180507183610564,JCYJ20190806144416980)。
文摘Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system.
基金This work was supported by the Key Research and Development Program of Guangdong Province(2019B090915001)the Basic Research Program of Shenzhen(JSGG20200103103401723,JCYJ20190806142818365,and JCYJ20180507183610564).
文摘In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator,this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg.It adopts the EtherCAT communication protocol and has the characteristics of high load-to-weight ratio.In order to achieve constant force tracking under the condition of unknown environmental parameters,an integral adaptive admittance control method is proposed.The control law is expressed as a third-order linear system equation,the operating environment is equivalent to a spring model,and the control error transfer function is derived.The control performance under the step response is further analyzed.The simulation results show that the proposed integral adaptive admittance control method has better performance than the traditional method.It has no steady-state error,overcomes the problems caused by nonlinear discrete compensation,and can facilitate analysis in the frequency domain,realize parameter optimization,and improve calculation accuracy.
基金supported by the National Natural Science Founda-tion of China(Grant No.U1613227)Guangdong Special Support Pro-gram,China(GrantNo.2017TX04X0071)the Basic Research Pro-gram of Shenzhen,China(JCYJ20180507183610564,JCYJ20190806144416980).
文摘Inspired by large and medium-sized birds,two kinds of flapping-wing flying robots with wingspans beyond 2 meters were developed.They have the appearance of a hawk and a phoenix respectively,so they are called HIT-Hawk and HIT-Phoenix.In this paper,the bionic concept,theoretical analysis,design and manufacturing are introduced in detail.Firstly,the flight principle and characteristics of large and medium-sized birds were summarized.Then,the aerodynamics was modeled based on the thin airfoil theory,and the main design basis was established.Secondly,the mechanical structures of HIT-Hawk and HIT-Phoenix were designed to ensure the lateral and longitudinal stability and have optimized flight performance.Moreover,an autonomous flight control method was proposed and realized in highly integrated on-onboard controller;it satisfies the strict restrictions on mass,size,power and shape.Finally,the prototypes were fabricated and verified through practical flight experiments.The wingspans of these two flapping wing aircrafts are 2.0 m and 2.3 m respectively,the take-off weights are 1.15 kg and 0.86 kg,and the maximum stable endurance is 65 min(with battery of 3S LiPo,4300 mAh)and 8 min(with battery of 3S LiPo,800 mAh).Their wind resistance can both reach level 4.Compared with the small and micro flapping-wing aerial vehicles that mimic insects or small birds,they both have strong load capacity,strong wind resistance and long endurance.