Through the analysis of ocean organisms, the distribution characteristics and enrichment of organic matters in modern marine sediments and ancient marine strata, this paper shows that the main factors influencing the ...Through the analysis of ocean organisms, the distribution characteristics and enrichment of organic matters in modern marine sediments and ancient marine strata, this paper shows that the main factors influencing the formation of excellent marine source rocks are the paleoclimate, biologic productivity, terrestrial organic matter, oxidation–reduction environment, sedimentation rate, and the type of the basin. In addition to those factors,high biologic productivity or high content of terrestrial organic matter input is a requirement for the enrichment of the organic matter in a marine environment. Reducing environment was favorable for organic matter accumulation and preservation in depositing and early diagenesis stage, which is an important element for the formation of high-quality marine source rocks. Paleoclimate also influences the marine source rocks formation, as humid subtropical and tropical climates are the most favorable regimes for the formation of marine source rocks. Wind transports some vascular plant materials into the marine environment. Furthermore, upwellings driven by steady wind can cause high biologic productivity, thus formingorganic-C-rich mud. Suitable sedimentation rate is beneficial for marine organic matter accumulation. Moreover, the type of the basin also plays an important role in the development of marine source rocks. Silled basins with a positive water balance often act as nutrient traps, thus enhancing both productivity and organic matter preservations, while in open oceans, organic matter enrichment in sediments has just been found in the oxygen minimum layers.展开更多
High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption application...High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption applications.Herein,we develop the outstanding engineering carbon adsorbents from waste shaddock peel which affords greatly-enhanced thermal-stability and super structural property(S_(Lang)=4962.6 m2·g^(-1),Vmicro=1.67 cm^(3)·g^(-1)).Such character endows the obtained adsorbent with ultrahigh adsorption capture performance of VOCs specific to benzene(16.58 mmol·g^(-1))and toluene(15.50 mmol·g^(-1),far beyond traditional zeolite and activated carbon even MOFs materials.The structural expression characters were accurately correlated with excellent adsorption efficiency of VOCs by studying synthetic factor-controlling comparative samples.Ulteriorly,adsorption selectivity prediction at different relative humidity was demonstrated through DIH(difference of the isosteric heats),exceedingly highlighting great superiority(nearly sixfold)in selective adsorption of toluene compared to volatile benzene.Our findings provide the possibility for practical industrial application and fabrication of waste biomass-derived outstanding biochar adsorbent in the environmental treatment of threatening VOCs pollutants.展开更多
eDNA metabarcoding is an advanced method formonitoring biodiversityproposed in recent years.By analyzing DNA in water,soil and sediment samples,the technology obtains species distribution and population quantity infor...eDNA metabarcoding is an advanced method formonitoring biodiversityproposed in recent years.By analyzing DNA in water,soil and sediment samples,the technology obtains species distribution and population quantity information.It was found that macrobarcode technology is more accurate than the traditional method in measuring the species richness of some groups.In Europe,America and South America,the relia bility of this technology in monitoring amphibian diversity in the wild was studied,and it was found to be better than traditional biodiversity monitoring methods in detecting species diversity.At present,amphibian monitoring mainly depends on various traditional methods,such as transects,drift fence traps,artificial shelters and mark-recapture.These monitoring techniques have many shortcomings,such as low accuracy and strong subjectivity of study results.These technologies have poor effects on rare,invasive and endangered species with strong concealment ability,low density and strong seasonality and are difficult to implement in sites inaccessible to people.Traditional monitoring technology also requires considerable investment of human and material resources,and the economic cost is relatively high,while eDNA metabarcoding ismore efficient and less costly,so it is important to use eDNA meta barcoding in amphibian monitoring in China.In this study,the eDNA meta barcoding and traditional line transect method(TLTM)were used to study the characteristics of the two methods in the Beijing-Tianjin-Hebeiregion.Repeated samplingwas conducted on 58 waterbodies in July 2019 and June 2020.After sequencing the samples using highthroughput sequencing technology,the differences between metabarcoding and commonly used TLTM surveys in detecting the diversity of four amphibians in North China were assessed.Our results showed that eDNA meta barcoding is more sensitive to the detection of the four amphibian species in the sampling area,and the combined use of eDNA metabarcoding and TLTM can improve the survey results of amphibians in the survey area to the greatest extent.In addition,in the process of species classification and identification of metabarcoding results,7 species of reptiles were detected,indicating that eDNA metabarcoding is also useful to detect reptiles.The results of this study indicate that metabarcoding in combination with TLTM can accurately estimate the diversityof amphibians in a short-term survey in North China and is also useful in reptile species detection.展开更多
Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection ra...Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.展开更多
Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic...Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on.展开更多
The insurance industry typically exploits ruin theory on collected data to gain more profits.However,state-of-art approaches fail to consider the dependency of the intensity of claim numbers,resulting in the loss of a...The insurance industry typically exploits ruin theory on collected data to gain more profits.However,state-of-art approaches fail to consider the dependency of the intensity of claim numbers,resulting in the loss of accuracy.In this work,we establish a new risk model based on traditional AR(1)time series,and propose a fine-gained insurance model which has a dependent data structure.We leverage Newton iteration method to figure out the adjustment coefficient and evaluate the exponential upper bound of the ruin probability.We claim that our model significantly improves the precision of insurance model and explores an interesting direction for future research.展开更多
Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline bl...Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline blue degradation is likely to facilitate an understanding of the degradation mechanism for a range of related dyes. In this study, we managed to isolate a particular strain of microorganism, identified to be Lysinibacillus fusiformis N019a, which showed a significant capacity for aniline blue degradation in both laboratory tests and natural sewage treatment. In analysis aided by a UV-Visible spectrophotometer, we found that 96.7% of aniline blue had degraded within 24 hours under laboratory conditions. When treating natural sewage, 80.1% of the aniline blue was removed after just 16 hours. Further analysis has shown that Lysinibacillus fusiformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, and Pb2+. We also found that the degradation product of aniline blue by Lysinibacillus fusiformis N019a was of reduced toxicity to plants and microbes.展开更多
O-phthalic acid is a kind of important pollutant, which accumulates in the environment with the extensive use of plastics and other products. Meanwhile, phthalic acid is one of the high content of allelopathic autotox...O-phthalic acid is a kind of important pollutant, which accumulates in the environment with the extensive use of plastics and other products. Meanwhile, phthalic acid is one of the high content of allelopathic autotoxic substances secreted by tobacco. The accumulation of phthalic acid in soil is an important cause of tobacco continuous cropping effect. In order to degrade phthalic acid accumulated in environment, the barrier effect of tobacco continuous cropping caused by phthalic acid accumulation in soil can be removed. A strain capable of degrading phthalic acid was isolated from sludge of sewage treatment plant and compared with 16 s DNA. The homology between this strain and Enterobacter sp. is 99%. The optimum growth conditions are as follows: pH7 at 30°C, 500 mg/L of o-phthalic acid, inoculation concentration ≥ 1.2% and its highest degradation rate of o-phthalic acid is 74%. The results of pot experiment showed that the degradation efficiency of o-phthalic acid in soil was about 40%, which alleviated the inhibitory effect of o-phthalic acid accumulation on tobacco growth.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends w...In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends with 80%diesel/20%butanol and 60%diesel/40%butanol mixed by volume were tested in this study.The pure diesel B0 was also tested here as a reference.The spray penetration,flame lift-off length,and soot optical thickness were obtained through high-speed schlieren imaging,OH*chemiluminescence,and diffused back-illumination extinction imaging technique,respectively.The thermogravimetric curves of different fuels were obtained through a thermogravimetric analyzer.The results showed that butanol/diesel blends presented a longer ignition delay(ID)and flame lift-off length compared with pure diesel,and such finding was mainly caused by the lower cetane number and higher latent heat of vaporization of n-butanol.With the increase in the n-butanol ratio,soot production in the combustion process decreased significantly.Given the shorter ID period,the soot distribution of pure diesel reached a steady state earlier than the blends.展开更多
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ...The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.展开更多
In order to improve the spore yield of compound Bacillus spp. (B. amyloliquefaciens, B. laterosporus and B. megaterium), the effects of nutrient conditions including carbon source, nitrogen source, mineral salt and fe...In order to improve the spore yield of compound Bacillus spp. (B. amyloliquefaciens, B. laterosporus and B. megaterium), the effects of nutrient conditions including carbon source, nitrogen source, mineral salt and fermentation conditions including the inoculum age, inoculation amount, loading volume of liquid and initial pH on the spore yield were studied. The results indicated that the optimized medium was glucoses 20 g/L, soybean meal 30.0 g/L, K2HPO4 1.0 g/L;fermentation temperature is 37℃, the inoculum age 12 h, initial pH 7.0, 2% inoculation amount, loading volume of liquid 20 mL/250 mL. Under the optimized conditions of culture medium and fermentation for compound Bacillus spp., spore yield was 10.24 times more than the initial medium, and the spore formation rate reached more than 90%.展开更多
Previous phylogenetic analyses of the auraria species complex have led to conflicting hypotheses concerning their relationship;therefore the addition of new sequence data is necessary to discover the phylogeny of this...Previous phylogenetic analyses of the auraria species complex have led to conflicting hypotheses concerning their relationship;therefore the addition of new sequence data is necessary to discover the phylogeny of this species complex. Here we present new data derived from 22 genes to reconstruct the phylogeny of the auraria species complex. A variety of statistical tests, as well as maximum likelihood mapping analysis, were performed to estimate data quality, suggesting that all genes had a high degree of contribution to resolve the phylogeny. Individual locus was analyzed using maximum likelihood (ML), and the concatenated dataset (21,882 bp) were analyzed using partitioned maximum likelihood (ML) and Bayesian analyses. Separated analysis produced various phylogenetic relationships. Phylogenetic topologies from ML and Bayesian analysis based on concatenated dataset show that D. subauraria was well supported as the first species by separated analysis, concatenated dataset analysis, and some previous analysis, then followed by D. auraria and D. biauraria, D. quadraria and D. triauraria. The close relationships of D. quadraria and D. triauraria were consistent with most previous studies. The phylogenetic position of the D. auraria and D. biauraria will be resolved by more data sets.展开更多
High carrier recombination loss at the metal and silicon contact regions is one of the dominant factors constraining the power conversion efficiency(PCE)of crystalline silicon(c-Si)solar cells.Metal compound-based car...High carrier recombination loss at the metal and silicon contact regions is one of the dominant factors constraining the power conversion efficiency(PCE)of crystalline silicon(c-Si)solar cells.Metal compound-based carrier-selective contacts are being intensively developed to address this issue.In this work,we present a high-performance electron-selective SiO_(x)/MgO_(x)contact for c-Si solar cells.The SiO_(x)/MgO_(x)stack is prepared by thermally-grown SiO_(x)(∼0.7 nm)and thermally-evaporated MgO_(x)(~1.0 nm).The electron selectivity of SiO_(x)/MgO_(x)contact is investigated by measuring the surface passivation and the contact resistivity(ρ_(c))on the c-Si surface.The results demonstrate that optimized SiO_(x)/MgO_(x)contact displays a very lowρ_(c)(3.4 mΩcm^(2))and a good surface passivation on an n-type c-Si surface simultaneously.A high PCE of 21.1%is achieved on an n-type c-Si solar cell featuring a full-area SiO_(x)/MgO_(x)rear contact.展开更多
Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence.The activation and proliferation of hepatic stellate cells(HSCs)is the most fundamental reason of hepatic fibrosis.There are no s...Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence.The activation and proliferation of hepatic stellate cells(HSCs)is the most fundamental reason of hepatic fibrosis.There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present.We found that when hepatic fibrosis occurs,the expression of CD44 receptors on the surface of HSCs is significantly increased.Based on this finding,we designed silibinin-loaded hyaluronic acid(SLB-HA)micelles to achieve the treatment of hepatic fibrosis.Meanwhile,we constructed liver fibrosis rat model using Sprague-Dawley rats.We demonstrated that HA micelles had specific uptake to HSCs in vitro while avoiding the distribution in normal liver cells and the phagocytosis of macrophages.Importantly,HA micelles showed a significant liver targeting effect in vivo,especially in fibrotic liver which highly expressed CD44 receptors.In addition,SLB-HA micelles could selectively kill activated HSCs,having an excellent anti-hepatic fibrosis effect in vivo and a significant sustained release effect,and also had a good biological safety and biocompatibility.Overall,HA micelles represented a novel nanomicelle system which showed great potentiality in anti-hepatic fibrosis drugs delivery.展开更多
An integrated few-mode erbium-doped fiber amplifier(FM-EDFA)with high modal gain is suitable for the in-line amplification in mode-division multiplexing transmission(MDM)systems.We first experimentally demonstrate a d...An integrated few-mode erbium-doped fiber amplifier(FM-EDFA)with high modal gain is suitable for the in-line amplification in mode-division multiplexing transmission(MDM)systems.We first experimentally demonstrate a dual-stage integrated FM-EDFA supporting three linear polarization modes.Consisting of integrated passive components with low insertion losses,the FM-EDFA has a similar structure and performance to widely used commercial single-mode EDFAs.The averaged modal gain of 25 dB,the differential modal gain(DMG)of<1.1 dB,and noise figures of 5–7 dB are simultaneously achieved.In addition,the DMG of the 3M-EDF itself is~0.3 dB.Moreover,an MDM transmission experiment with the in-line few-mode amplification by our proposed FM-EDFA over a 3840-km few-mode fiber link for a 28-Gbaud quadrature phase-shift keying(QPSK)signal is demonstrated.展开更多
Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight.Although upconversion material may photogenerate electrons with sufficient ene...Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight.Although upconversion material may photogenerate electrons with sufficient energy,the electron transfer between upconversion material and semiconductor is inefficient limiting overall photocatalytic performance.In this work,a TiO_(2)/graphene quantum dot(GQD)hybrid system has been designed with intimate interface,which enables highly efficient transfer of photogenerated electrons from GQDs to TiO_(2).The designed hybrid material with high photogenerated electron density displays photocatalytic activity under infrared light(20 mW cm^(-2))for overall water splitting(H_(2):60.4μmol g_(cat).^(-1)h^(-1)and O_(2):30.0μmol g_(cat).^(-1)h^(-1)).With infrared light well harnessed,the system offers a solar-to-hydrogen(STH)efficiency of 0.80%in full solar spectrum.This work provides new insight into harnessing charge transfer between upconversion materials and semiconductor photocatalysts and opens a new avenue for designing photocatalysts toward working under infrared light.展开更多
The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of th...The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of the modelling equation’s production term,the rotation function f_(r1)should have a cautiously designed value range,but its limit varies in different models and flow solvers.Therefore,the need of restriction is discussed theoretically,and the common range of f_(r1)is explored in Burgers vortexes.Afterwards,the SA-RC model with different limits is tested numerically.Negative f_(r1)always appears in the SA-RC model,and the difference between simula-tion results brought by the limits is not negligible.A lower limit of 0 enhances turbulence produc-tion,and therefore the vortex structures are dissipated faster and shrink in size,while an upper limit plays an opposite role.Considering that the lower limit of 0 usually promotes the simulation accu-racy and fixes the numerical defect,whereas the upper limit worsens the predictive performance in most cases,it is recommended to limit f_(r1)non-negative while utilizing the SA-RC model.In addi-tion,the RC-corrected model has a better prediction of the attached flow near curved walls,while the SA-Helicity model largely improves the simulation accuracy of three-dimensional large-scale vortices.The model combining both corrections has the potential to become more adaptive and more accurate.展开更多
Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species,but patterns and drivers of al...Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species,but patterns and drivers of alien species assemblages remain poorly understood relative to native species.Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity.However,it remains unclear which climatic factors drive the assemblage of alien species.Here,we compiled global data at both grid scale(2,653 native and 2,806 current grids with a resolution of 2°x 2°)and administrative scale(271 native and 297 current nations and sub-nations)on the distributions of 361 alien amphibians and reptiles(herpetofauna),the most threatened vertebrate group on the planet.We found that geographical distance,proxy for natural dispersal barriers,was the dominant variable contributing to alien herpetofaunal assemblage in native ranges.In contrast,climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions.This pattern was driven by extremely high temperatures and precipitation seasonality,2 hallmarks of global climate change,and bilateral trade which can account for the alien assemblage after invasions.Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.展开更多
基金supported by the Major State Basic Research Development Program (973 Project) (Number: 2009CB219402)Key Program of National Natural Science Foundation of China ((Number: 41330313)
文摘Through the analysis of ocean organisms, the distribution characteristics and enrichment of organic matters in modern marine sediments and ancient marine strata, this paper shows that the main factors influencing the formation of excellent marine source rocks are the paleoclimate, biologic productivity, terrestrial organic matter, oxidation–reduction environment, sedimentation rate, and the type of the basin. In addition to those factors,high biologic productivity or high content of terrestrial organic matter input is a requirement for the enrichment of the organic matter in a marine environment. Reducing environment was favorable for organic matter accumulation and preservation in depositing and early diagenesis stage, which is an important element for the formation of high-quality marine source rocks. Paleoclimate also influences the marine source rocks formation, as humid subtropical and tropical climates are the most favorable regimes for the formation of marine source rocks. Wind transports some vascular plant materials into the marine environment. Furthermore, upwellings driven by steady wind can cause high biologic productivity, thus formingorganic-C-rich mud. Suitable sedimentation rate is beneficial for marine organic matter accumulation. Moreover, the type of the basin also plays an important role in the development of marine source rocks. Silled basins with a positive water balance often act as nutrient traps, thus enhancing both productivity and organic matter preservations, while in open oceans, organic matter enrichment in sediments has just been found in the oxygen minimum layers.
基金financially supported by National Natural Science Foundation of China (21908085)Natural Science Foundation of Jiangsu Province, China (BK20190961)+2 种基金Postdoctoral Research Foundation of Jiangsu Province (2020Z291)Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology, China (HZ20190004)High-tech Ship Research Project of the Ministry of Industry and Information Technology, China (No. [2017] 614)
文摘High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption applications.Herein,we develop the outstanding engineering carbon adsorbents from waste shaddock peel which affords greatly-enhanced thermal-stability and super structural property(S_(Lang)=4962.6 m2·g^(-1),Vmicro=1.67 cm^(3)·g^(-1)).Such character endows the obtained adsorbent with ultrahigh adsorption capture performance of VOCs specific to benzene(16.58 mmol·g^(-1))and toluene(15.50 mmol·g^(-1),far beyond traditional zeolite and activated carbon even MOFs materials.The structural expression characters were accurately correlated with excellent adsorption efficiency of VOCs by studying synthetic factor-controlling comparative samples.Ulteriorly,adsorption selectivity prediction at different relative humidity was demonstrated through DIH(difference of the isosteric heats),exceedingly highlighting great superiority(nearly sixfold)in selective adsorption of toluene compared to volatile benzene.Our findings provide the possibility for practical industrial application and fabrication of waste biomass-derived outstanding biochar adsorbent in the environmental treatment of threatening VOCs pollutants.
基金supported by grants from The Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006)National Natural Science Foundation of China (32030070)+2 种基金the High-Level Talents Research Start-Up Project of Hebei UniversityChina’s Biodiversity Observation Network (Sino-BON)Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0501)
文摘eDNA metabarcoding is an advanced method formonitoring biodiversityproposed in recent years.By analyzing DNA in water,soil and sediment samples,the technology obtains species distribution and population quantity information.It was found that macrobarcode technology is more accurate than the traditional method in measuring the species richness of some groups.In Europe,America and South America,the relia bility of this technology in monitoring amphibian diversity in the wild was studied,and it was found to be better than traditional biodiversity monitoring methods in detecting species diversity.At present,amphibian monitoring mainly depends on various traditional methods,such as transects,drift fence traps,artificial shelters and mark-recapture.These monitoring techniques have many shortcomings,such as low accuracy and strong subjectivity of study results.These technologies have poor effects on rare,invasive and endangered species with strong concealment ability,low density and strong seasonality and are difficult to implement in sites inaccessible to people.Traditional monitoring technology also requires considerable investment of human and material resources,and the economic cost is relatively high,while eDNA metabarcoding ismore efficient and less costly,so it is important to use eDNA meta barcoding in amphibian monitoring in China.In this study,the eDNA meta barcoding and traditional line transect method(TLTM)were used to study the characteristics of the two methods in the Beijing-Tianjin-Hebeiregion.Repeated samplingwas conducted on 58 waterbodies in July 2019 and June 2020.After sequencing the samples using highthroughput sequencing technology,the differences between metabarcoding and commonly used TLTM surveys in detecting the diversity of four amphibians in North China were assessed.Our results showed that eDNA meta barcoding is more sensitive to the detection of the four amphibian species in the sampling area,and the combined use of eDNA metabarcoding and TLTM can improve the survey results of amphibians in the survey area to the greatest extent.In addition,in the process of species classification and identification of metabarcoding results,7 species of reptiles were detected,indicating that eDNA metabarcoding is also useful to detect reptiles.The results of this study indicate that metabarcoding in combination with TLTM can accurately estimate the diversityof amphibians in a short-term survey in North China and is also useful in reptile species detection.
基金supported by grants from the National Natural Science Foundation of China (41662004)the Jiangxi Graduate Innovation Fund (YC2021-S557),China。
文摘Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.
基金supported by the National Natural Science Foundation of China(52006056)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-01-04)+2 种基金the Key-Area Research and Development Program of Guangdong Province(2020B090923003)partly supported by Natural Science Foundation of Hunan through Grant No.2020JJ3012Natural Research Institute for Family Planning。
文摘Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on.
基金the Natural Science Foundation of Jilin Province(No.20180101216JC)the National Natural Science Foundation of China(No.11871028).
文摘The insurance industry typically exploits ruin theory on collected data to gain more profits.However,state-of-art approaches fail to consider the dependency of the intensity of claim numbers,resulting in the loss of accuracy.In this work,we establish a new risk model based on traditional AR(1)time series,and propose a fine-gained insurance model which has a dependent data structure.We leverage Newton iteration method to figure out the adjustment coefficient and evaluate the exponential upper bound of the ruin probability.We claim that our model significantly improves the precision of insurance model and explores an interesting direction for future research.
文摘Aniline blue, one of the triphenylmethane dyes, is the most commonly produced and used of these dyes yet it is also the most dangerous and the most serious cause of pollution amongst them. An exploration of aniline blue degradation is likely to facilitate an understanding of the degradation mechanism for a range of related dyes. In this study, we managed to isolate a particular strain of microorganism, identified to be Lysinibacillus fusiformis N019a, which showed a significant capacity for aniline blue degradation in both laboratory tests and natural sewage treatment. In analysis aided by a UV-Visible spectrophotometer, we found that 96.7% of aniline blue had degraded within 24 hours under laboratory conditions. When treating natural sewage, 80.1% of the aniline blue was removed after just 16 hours. Further analysis has shown that Lysinibacillus fusiformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, and Pb2+. We also found that the degradation product of aniline blue by Lysinibacillus fusiformis N019a was of reduced toxicity to plants and microbes.
文摘O-phthalic acid is a kind of important pollutant, which accumulates in the environment with the extensive use of plastics and other products. Meanwhile, phthalic acid is one of the high content of allelopathic autotoxic substances secreted by tobacco. The accumulation of phthalic acid in soil is an important cause of tobacco continuous cropping effect. In order to degrade phthalic acid accumulated in environment, the barrier effect of tobacco continuous cropping caused by phthalic acid accumulation in soil can be removed. A strain capable of degrading phthalic acid was isolated from sludge of sewage treatment plant and compared with 16 s DNA. The homology between this strain and Enterobacter sp. is 99%. The optimum growth conditions are as follows: pH7 at 30°C, 500 mg/L of o-phthalic acid, inoculation concentration ≥ 1.2% and its highest degradation rate of o-phthalic acid is 74%. The results of pot experiment showed that the degradation efficiency of o-phthalic acid in soil was about 40%, which alleviated the inhibitory effect of o-phthalic acid accumulation on tobacco growth.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金Supported by the National Natural Science Foundation of China(Grant No.52276116)Shenzhen Basic Key Research Project(Grant No.JCYJ20200109115414354).
文摘In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends with 80%diesel/20%butanol and 60%diesel/40%butanol mixed by volume were tested in this study.The pure diesel B0 was also tested here as a reference.The spray penetration,flame lift-off length,and soot optical thickness were obtained through high-speed schlieren imaging,OH*chemiluminescence,and diffused back-illumination extinction imaging technique,respectively.The thermogravimetric curves of different fuels were obtained through a thermogravimetric analyzer.The results showed that butanol/diesel blends presented a longer ignition delay(ID)and flame lift-off length compared with pure diesel,and such finding was mainly caused by the lower cetane number and higher latent heat of vaporization of n-butanol.With the increase in the n-butanol ratio,soot production in the combustion process decreased significantly.Given the shorter ID period,the soot distribution of pure diesel reached a steady state earlier than the blends.
基金supported by the National Natural Science Foundation of China(No.91963118 and 52102213)Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.
文摘In order to improve the spore yield of compound Bacillus spp. (B. amyloliquefaciens, B. laterosporus and B. megaterium), the effects of nutrient conditions including carbon source, nitrogen source, mineral salt and fermentation conditions including the inoculum age, inoculation amount, loading volume of liquid and initial pH on the spore yield were studied. The results indicated that the optimized medium was glucoses 20 g/L, soybean meal 30.0 g/L, K2HPO4 1.0 g/L;fermentation temperature is 37℃, the inoculum age 12 h, initial pH 7.0, 2% inoculation amount, loading volume of liquid 20 mL/250 mL. Under the optimized conditions of culture medium and fermentation for compound Bacillus spp., spore yield was 10.24 times more than the initial medium, and the spore formation rate reached more than 90%.
文摘Previous phylogenetic analyses of the auraria species complex have led to conflicting hypotheses concerning their relationship;therefore the addition of new sequence data is necessary to discover the phylogeny of this species complex. Here we present new data derived from 22 genes to reconstruct the phylogeny of the auraria species complex. A variety of statistical tests, as well as maximum likelihood mapping analysis, were performed to estimate data quality, suggesting that all genes had a high degree of contribution to resolve the phylogeny. Individual locus was analyzed using maximum likelihood (ML), and the concatenated dataset (21,882 bp) were analyzed using partitioned maximum likelihood (ML) and Bayesian analyses. Separated analysis produced various phylogenetic relationships. Phylogenetic topologies from ML and Bayesian analysis based on concatenated dataset show that D. subauraria was well supported as the first species by separated analysis, concatenated dataset analysis, and some previous analysis, then followed by D. auraria and D. biauraria, D. quadraria and D. triauraria. The close relationships of D. quadraria and D. triauraria were consistent with most previous studies. The phylogenetic position of the D. auraria and D. biauraria will be resolved by more data sets.
基金financially supported by the National Natural Science Foundation of China(62174114)the National Key R&D Program of China(2022YFB4200203)+2 种基金the Department of Science and Technology of Jiangsu Province(BE2022036,BE2022027,and BE2022023)the Distinguished Professor Award of Jiangsu Provincethe"Dual Carbon"Science and Technology Project of Suzhou(ST202219)。
文摘High carrier recombination loss at the metal and silicon contact regions is one of the dominant factors constraining the power conversion efficiency(PCE)of crystalline silicon(c-Si)solar cells.Metal compound-based carrier-selective contacts are being intensively developed to address this issue.In this work,we present a high-performance electron-selective SiO_(x)/MgO_(x)contact for c-Si solar cells.The SiO_(x)/MgO_(x)stack is prepared by thermally-grown SiO_(x)(∼0.7 nm)and thermally-evaporated MgO_(x)(~1.0 nm).The electron selectivity of SiO_(x)/MgO_(x)contact is investigated by measuring the surface passivation and the contact resistivity(ρ_(c))on the c-Si surface.The results demonstrate that optimized SiO_(x)/MgO_(x)contact displays a very lowρ_(c)(3.4 mΩcm^(2))and a good surface passivation on an n-type c-Si surface simultaneously.A high PCE of 21.1%is achieved on an n-type c-Si solar cell featuring a full-area SiO_(x)/MgO_(x)rear contact.
基金financially supported by National Natural Science Foundation of China(81673359)Sichuan Major Science and Technology Project on Biotechnology and Medicine(No.2018SZDZX0018,China).
文摘Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence.The activation and proliferation of hepatic stellate cells(HSCs)is the most fundamental reason of hepatic fibrosis.There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present.We found that when hepatic fibrosis occurs,the expression of CD44 receptors on the surface of HSCs is significantly increased.Based on this finding,we designed silibinin-loaded hyaluronic acid(SLB-HA)micelles to achieve the treatment of hepatic fibrosis.Meanwhile,we constructed liver fibrosis rat model using Sprague-Dawley rats.We demonstrated that HA micelles had specific uptake to HSCs in vitro while avoiding the distribution in normal liver cells and the phagocytosis of macrophages.Importantly,HA micelles showed a significant liver targeting effect in vivo,especially in fibrotic liver which highly expressed CD44 receptors.In addition,SLB-HA micelles could selectively kill activated HSCs,having an excellent anti-hepatic fibrosis effect in vivo and a significant sustained release effect,and also had a good biological safety and biocompatibility.Overall,HA micelles represented a novel nanomicelle system which showed great potentiality in anti-hepatic fibrosis drugs delivery.
基金National Key Research and Development Program of China(2019YFB2203902)National Natural Science Foundation of China(62105241)。
文摘An integrated few-mode erbium-doped fiber amplifier(FM-EDFA)with high modal gain is suitable for the in-line amplification in mode-division multiplexing transmission(MDM)systems.We first experimentally demonstrate a dual-stage integrated FM-EDFA supporting three linear polarization modes.Consisting of integrated passive components with low insertion losses,the FM-EDFA has a similar structure and performance to widely used commercial single-mode EDFAs.The averaged modal gain of 25 dB,the differential modal gain(DMG)of<1.1 dB,and noise figures of 5–7 dB are simultaneously achieved.In addition,the DMG of the 3M-EDF itself is~0.3 dB.Moreover,an MDM transmission experiment with the in-line few-mode amplification by our proposed FM-EDFA over a 3840-km few-mode fiber link for a 28-Gbaud quadrature phase-shift keying(QPSK)signal is demonstrated.
基金the Natural Science Foundation of China(51902077 and 21725102)Zhejiang Provincial Natural Science Foundation(LY18E020010 and LQ19B010001)+3 种基金Zhejiang Province“Ten Thousand People Plan”(2018R52015)Pandeng Plan Foundation of Hangzhou Normal University for Youth Scholars of Materials,Chemistry and Chemical Engineering,Agricultural and Social Development Program Project(2020ZDSJ0712)of Hangzhou ScienceTechnology Bureau of Zhejiang Province,general items of Zhejiang Provincial Department of Education(Y201840068)Visiting Scholar Development Project of Department of Education of Zhejiang Provincial(FX2019043).
文摘Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in sunlight.Although upconversion material may photogenerate electrons with sufficient energy,the electron transfer between upconversion material and semiconductor is inefficient limiting overall photocatalytic performance.In this work,a TiO_(2)/graphene quantum dot(GQD)hybrid system has been designed with intimate interface,which enables highly efficient transfer of photogenerated electrons from GQDs to TiO_(2).The designed hybrid material with high photogenerated electron density displays photocatalytic activity under infrared light(20 mW cm^(-2))for overall water splitting(H_(2):60.4μmol g_(cat).^(-1)h^(-1)and O_(2):30.0μmol g_(cat).^(-1)h^(-1)).With infrared light well harnessed,the system offers a solar-to-hydrogen(STH)efficiency of 0.80%in full solar spectrum.This work provides new insight into harnessing charge transfer between upconversion materials and semiconductor photocatalysts and opens a new avenue for designing photocatalysts toward working under infrared light.
基金supported by the National Natural Science Foundation of China(Nos.51976006,51790513)the Aeronautical Science Foundation of China(No.2018ZB51013)+1 种基金the National Science and Technology Major Project,China(2017-II-003-0015)the Open Fund from State Key Laboratory of Aerodynamics,China(No.SKLA2019A0101).
文摘The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of the modelling equation’s production term,the rotation function f_(r1)should have a cautiously designed value range,but its limit varies in different models and flow solvers.Therefore,the need of restriction is discussed theoretically,and the common range of f_(r1)is explored in Burgers vortexes.Afterwards,the SA-RC model with different limits is tested numerically.Negative f_(r1)always appears in the SA-RC model,and the difference between simula-tion results brought by the limits is not negligible.A lower limit of 0 enhances turbulence produc-tion,and therefore the vortex structures are dissipated faster and shrink in size,while an upper limit plays an opposite role.Considering that the lower limit of 0 usually promotes the simulation accu-racy and fixes the numerical defect,whereas the upper limit worsens the predictive performance in most cases,it is recommended to limit f_(r1)non-negative while utilizing the SA-RC model.In addi-tion,the RC-corrected model has a better prediction of the attached flow near curved walls,while the SA-Helicity model largely improves the simulation accuracy of three-dimensional large-scale vortices.The model combining both corrections has the potential to become more adaptive and more accurate.
基金supported by grants from National Science Foundation of China(31870507 and 31530088)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0501)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Y201920).
文摘Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species,but patterns and drivers of alien species assemblages remain poorly understood relative to native species.Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity.However,it remains unclear which climatic factors drive the assemblage of alien species.Here,we compiled global data at both grid scale(2,653 native and 2,806 current grids with a resolution of 2°x 2°)and administrative scale(271 native and 297 current nations and sub-nations)on the distributions of 361 alien amphibians and reptiles(herpetofauna),the most threatened vertebrate group on the planet.We found that geographical distance,proxy for natural dispersal barriers,was the dominant variable contributing to alien herpetofaunal assemblage in native ranges.In contrast,climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions.This pattern was driven by extremely high temperatures and precipitation seasonality,2 hallmarks of global climate change,and bilateral trade which can account for the alien assemblage after invasions.Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.