Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation o...Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation of marine ranching,such as imperfect criteria system,complex structure,untargeted criteria quantification,etc.In addition,no site-selection evaluation method of bottom-seeding culture areas for scallops is available.Therefore,we established a hierarchy structure model according to the analytic hierarchy process(AHP)theory,in which social,physical,chemical,and biological environments are used as main criteria,and marine functional zonation,water depth,current,water temperature,salinity,substrate type,water quality,sediment quality,red tide,phytoplankton,and zooplankton are used as sub-criteria,on which a multi-parameter evaluation system is set up.Meanwhile,the dualism method,assignment method,and membership function method were used to quantify sub-criteria,and a quantitative evaluation for the entire criteria was added,including the evaluation and analysis of two types of unsuitable environmental situations.By overall consideration in scallop yield,quality,and marine ranching construction objectives,the weight of the main criteria could be determined.Five grades in the suitability corresponding to the evaluation result were divided,and the Python language was used to create an evaluation system for efficient calculation and intuitive presentation of the evaluation outcome.Eight marine cases were simulated based on existing survey data,and the results prove that the method is feasible for evaluating and analyzing the site selection of bottom-seeding culture areas for scallops under various environmental situations.The proposed evaluation method can be promoted for the site selection of bottom-seeding marine ranching.This study provided theoretical and methodological references for the site selection evaluation of other types of marine ranching.展开更多
Polyploid plants grow well,are stress tolerant,and are rich in nutrients and bioactive compounds.Thus,they are useful for improving crop quality and yield.In this study,we compared the seed characteristics and metabol...Polyploid plants grow well,are stress tolerant,and are rich in nutrients and bioactive compounds.Thus,they are useful for improving crop quality and yield.In this study,we compared the seed characteristics and metabolite profiles of diploid and tetraploid tartary buckwheat,which was developed via an artificially induced chromosome doubling event.The length,width,area,and thousand-grain weight were greater for the tetraploid seeds than for the diploid seeds.However,the germination rate decreased for the tetraploid seeds.Additionally,there was a gap between the shell and kernel of the tetraploid seeds.Moreover,the water absorption rate was higher for the tetraploid than for the diploid seeds.Chromosome doubling increased the seed total flavonoid content and deepened the seed color.A principal component analysis of the ultrahigh-pressure liquid chromatography-high resolution mass spectrometry data revealed the clear separation between the diploid and tetraploid samples.An orthogonal partial least squares-discriminant analysis and other multivariate statistical analyses identified 83 differentially abundant compounds,with most of the flavonoid metabolites more abundant in the tetraploid than in the diploid seeds.Research on tartary buckwheat polyploidy may result in enhanced germplasm resources and may clarify the mechanism underlying the biosynthesis of bioactive compounds.展开更多
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm...The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network.展开更多
In this study,the ultralow specific surface area clay vermiculite(VMT)was selected to be a catalyst support for the NH_(3)-SCR process,and the active components MnCeFeO_(x)loaded on vermiculite was just like curling o...In this study,the ultralow specific surface area clay vermiculite(VMT)was selected to be a catalyst support for the NH_(3)-SCR process,and the active components MnCeFeO_(x)loaded on vermiculite was just like curling on ice from the TEM results.The de-NO_(x)performance of Mn-Ce-Fe/VMT exhibited almost complete NO conversion with a gas hourly space velocity(GHSV)of 15,300 h^(-1)at 150℃,which was 25%and 10%higher than that of Mn/VMT and Mn-Ce/VMT,respectively.Ce and Fe co-doping improved the BET surface area,the quantities of active Mn^(4+),the acid sites and NH_(3)adsorption energy of Mn/VMT,all of which contributed to the increase in low-temperature SCR activity.In situ DRIFT measurements suggested that NO_(x)removal over Mn-Ce-Fe/VMT followed both Eley-Rideal(E-R)and Langmuir-Hinshelwood(L-H)mechanisms at 150℃,but the E-R mechanism played a dominant role.Corresponding Mn-Ce-Fe/VMT monolithic catalysts reached 90%NO conversion with a GHSV of 4000 h^(-1).展开更多
Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10-100 MeV/...Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10-100 MeV/u) is presented. By comparing high energy beams where projectile fragmentation is overwhelming with low energies where energy straggling is the sole factor instead, a crescent energy spread with increasing depth and a simple fragmentation assumption were included for the depth-dose calculation of the intermediate energy beam. Relative depth-dose curves of carbon and oxygen ion beams with intermediate energies were computed according to the method here. Comparisons between the calculated relative doses and measurements are shown. The calculated Bragg curves, especially the upstream and downstream Bragg peaks, agree with the measured data. Differences between the two results appear only around the peak regions because of the limitations of the calculation and experimental conditions, but the展开更多
Stretchable electronics are of great significance for the development of the next-generation smart interactive systems.Here,we propose an intrinsically stretchable organic tribotronic transistor(SOTT)without a top gat...Stretchable electronics are of great significance for the development of the next-generation smart interactive systems.Here,we propose an intrinsically stretchable organic tribotronic transistor(SOTT)without a top gate electrode,which is composed of a stretchable substrate,silver nanowire electrodes,semiconductor blends,and a nonpolar elastomer dielectric.The drain-source current of the SOTT can be modulated by external contact electrification with the dielectric layer.Under 0-50%stretching both parallel and perpendicular to the channel directions,the SOTT retains great output performance.After being stretched to 50%for thousands of cycles,the SOTT can survive with excellent stability.Moreover,the SOTT can be conformably attached to the human hand,which can be used for tactile signal perception in human-machine interaction and for controlling smart home devices and robots.This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction,which has extended the application of tribotronics in the human-machine interface,wearable electronics,and robotics.展开更多
Tribotronics,a new field that involves the coupling of triboelectricity and semiconductors,has attracted great interest in the nanoenergy and nanoelectronics domains.This paper proposes a tribotronic bipolar junction ...Tribotronics,a new field that involves the coupling of triboelectricity and semiconductors,has attracted great interest in the nanoenergy and nanoelectronics domains.This paper proposes a tribotronic bipolar junction transistor(TBJT)that incorporates a bipolar junction transistor and a triboelectric nanogenerator(TENG)in the single-electrode mode.When the mobile triboelectric layer slides on the device surface for electrification,a bias voltage is created and applied to the emitter junction,and then the base current from the TENG is amplified.Based on the fabricated TBJT,a mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch switch were developed.This work demonstrated for the first time a tribotronic device with simultaneously controlled voltage and current voltage/current simultaneously controlled tribotronic device,which has promising potential applications in micro/nano-sensors,human-machine interactions,intelligent instrumentation,wearable electronics,and other applications.展开更多
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42010203)the National Natural Science Foundation of China(No.42176090)。
文摘Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation of marine ranching,such as imperfect criteria system,complex structure,untargeted criteria quantification,etc.In addition,no site-selection evaluation method of bottom-seeding culture areas for scallops is available.Therefore,we established a hierarchy structure model according to the analytic hierarchy process(AHP)theory,in which social,physical,chemical,and biological environments are used as main criteria,and marine functional zonation,water depth,current,water temperature,salinity,substrate type,water quality,sediment quality,red tide,phytoplankton,and zooplankton are used as sub-criteria,on which a multi-parameter evaluation system is set up.Meanwhile,the dualism method,assignment method,and membership function method were used to quantify sub-criteria,and a quantitative evaluation for the entire criteria was added,including the evaluation and analysis of two types of unsuitable environmental situations.By overall consideration in scallop yield,quality,and marine ranching construction objectives,the weight of the main criteria could be determined.Five grades in the suitability corresponding to the evaluation result were divided,and the Python language was used to create an evaluation system for efficient calculation and intuitive presentation of the evaluation outcome.Eight marine cases were simulated based on existing survey data,and the results prove that the method is feasible for evaluating and analyzing the site selection of bottom-seeding culture areas for scallops under various environmental situations.The proposed evaluation method can be promoted for the site selection of bottom-seeding marine ranching.This study provided theoretical and methodological references for the site selection evaluation of other types of marine ranching.
基金the National Key R&D Program of China(2019YFD1001300,2019YFD1001303)the earmarked fund for China Agriculture Research System(CARS-08-02A).
文摘Polyploid plants grow well,are stress tolerant,and are rich in nutrients and bioactive compounds.Thus,they are useful for improving crop quality and yield.In this study,we compared the seed characteristics and metabolite profiles of diploid and tetraploid tartary buckwheat,which was developed via an artificially induced chromosome doubling event.The length,width,area,and thousand-grain weight were greater for the tetraploid seeds than for the diploid seeds.However,the germination rate decreased for the tetraploid seeds.Additionally,there was a gap between the shell and kernel of the tetraploid seeds.Moreover,the water absorption rate was higher for the tetraploid than for the diploid seeds.Chromosome doubling increased the seed total flavonoid content and deepened the seed color.A principal component analysis of the ultrahigh-pressure liquid chromatography-high resolution mass spectrometry data revealed the clear separation between the diploid and tetraploid samples.An orthogonal partial least squares-discriminant analysis and other multivariate statistical analyses identified 83 differentially abundant compounds,with most of the flavonoid metabolites more abundant in the tetraploid than in the diploid seeds.Research on tartary buckwheat polyploidy may result in enhanced germplasm resources and may clarify the mechanism underlying the biosynthesis of bioactive compounds.
基金Beijing Natural Science Foundation(No.IS23112)Beijing Institute of Technology Research Fund Program for Young Scholars(No.6120220236)。
文摘The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network.
基金supported by the Program of Science and Technology Innovation Team in Bingtuan(No.2020CB006)Science and Technology Innovation Talents Program of Bingtuan(No.2019CB025)Major Scientific and Technological Project of Bingtuan(No.2018AA002).
文摘In this study,the ultralow specific surface area clay vermiculite(VMT)was selected to be a catalyst support for the NH_(3)-SCR process,and the active components MnCeFeO_(x)loaded on vermiculite was just like curling on ice from the TEM results.The de-NO_(x)performance of Mn-Ce-Fe/VMT exhibited almost complete NO conversion with a gas hourly space velocity(GHSV)of 15,300 h^(-1)at 150℃,which was 25%and 10%higher than that of Mn/VMT and Mn-Ce/VMT,respectively.Ce and Fe co-doping improved the BET surface area,the quantities of active Mn^(4+),the acid sites and NH_(3)adsorption energy of Mn/VMT,all of which contributed to the increase in low-temperature SCR activity.In situ DRIFT measurements suggested that NO_(x)removal over Mn-Ce-Fe/VMT followed both Eley-Rideal(E-R)and Langmuir-Hinshelwood(L-H)mechanisms at 150℃,but the E-R mechanism played a dominant role.Corresponding Mn-Ce-Fe/VMT monolithic catalysts reached 90%NO conversion with a GHSV of 4000 h^(-1).
基金This work was jointly supported by the Western Hope Project of the Chinese Academy of Sciences (Grant No. XB010612) the Director Foundation of the Institute of Modern Physics, the Chinese Academy of Sciences (Grant No. ZY010606).
文摘Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10-100 MeV/u) is presented. By comparing high energy beams where projectile fragmentation is overwhelming with low energies where energy straggling is the sole factor instead, a crescent energy spread with increasing depth and a simple fragmentation assumption were included for the depth-dose calculation of the intermediate energy beam. Relative depth-dose curves of carbon and oxygen ion beams with intermediate energies were computed according to the method here. Comparisons between the calculated relative doses and measurements are shown. The calculated Bragg curves, especially the upstream and downstream Bragg peaks, agree with the measured data. Differences between the two results appear only around the peak regions because of the limitations of the calculation and experimental conditions, but the
基金the support of the National Natural Science Foundation of China(Nos.51922023 and 61874011)Beijing Natural Science Foundation(No.4192070)National Key Research and Development Program of China(2016YFA0202704).
文摘Stretchable electronics are of great significance for the development of the next-generation smart interactive systems.Here,we propose an intrinsically stretchable organic tribotronic transistor(SOTT)without a top gate electrode,which is composed of a stretchable substrate,silver nanowire electrodes,semiconductor blends,and a nonpolar elastomer dielectric.The drain-source current of the SOTT can be modulated by external contact electrification with the dielectric layer.Under 0-50%stretching both parallel and perpendicular to the channel directions,the SOTT retains great output performance.After being stretched to 50%for thousands of cycles,the SOTT can survive with excellent stability.Moreover,the SOTT can be conformably attached to the human hand,which can be used for tactile signal perception in human-machine interaction and for controlling smart home devices and robots.This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction,which has extended the application of tribotronics in the human-machine interface,wearable electronics,and robotics.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.51475099)Beijing Talents Foundation(2017000021223TD04)+3 种基金Beijing Nova Program(No.Z171100001117054)the Youth Innovation Promotion Association,CAS(No.2014033)the“Thousands Talents”program for the pioneer researcher and his innovation team,Chinathe National Key Research and Development Program of China(2016YFA0202704).
文摘Tribotronics,a new field that involves the coupling of triboelectricity and semiconductors,has attracted great interest in the nanoenergy and nanoelectronics domains.This paper proposes a tribotronic bipolar junction transistor(TBJT)that incorporates a bipolar junction transistor and a triboelectric nanogenerator(TENG)in the single-electrode mode.When the mobile triboelectric layer slides on the device surface for electrification,a bias voltage is created and applied to the emitter junction,and then the base current from the TENG is amplified.Based on the fabricated TBJT,a mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch switch were developed.This work demonstrated for the first time a tribotronic device with simultaneously controlled voltage and current voltage/current simultaneously controlled tribotronic device,which has promising potential applications in micro/nano-sensors,human-machine interactions,intelligent instrumentation,wearable electronics,and other applications.