期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information
1
作者 Hao Jiang Yuerong Liao +2 位作者 Dongdong Zhao wenjian luo Xingyi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1045-1075,共31页
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc... Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components. 展开更多
关键词 Attributed social network topology privacy node attribute privacy negative representation of information negative survey negative database
下载PDF
Classifying and clustering in negative databases 被引量:2
2
作者 Ran LIU wenjian luo Lihua YUE 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第6期864-874,共11页
Recently, negative databases (NDBs) are proposed for privacy protection. Similar to the traditional databases, some basic operations could be conducted over the NDBs, such as select, intersection, update, delete and... Recently, negative databases (NDBs) are proposed for privacy protection. Similar to the traditional databases, some basic operations could be conducted over the NDBs, such as select, intersection, update, delete and so on. However, both classifying and clustering in negative databases have not yet been studied. Therefore, two algorithms, i.e., a k nearest neighbor (kNN) classification algorithm and a k-means clustering algorithm in NDBs, are proposed in this paper, respectively. The core of these two algorithms is a novel method for estimating the Hamming distance between a binary string and an NDB. Experimental results demonstrate that classifying and clustering in NDBs are promising. 展开更多
关键词 negative databases CLASSIFICATION CLUSTERING k nearest neighbor K-MEANS hamming distance
原文传递
Robust peer-to-peer learning via secure multi-party computation 被引量:1
3
作者 Yongkang luo wenjian luo +2 位作者 Ruizhuo Zhang Hongwei Zhang Yuhui Shi 《Journal of Information and Intelligence》 2023年第4期341-351,共11页
To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning f... To solve the data island problem,federated learning(FL)provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation.Peer-to-peer(P2P)federated learning further improves the robustness of the system,in which there is no server and each client communicates directly with the other.For secure aggregation,secure multi-party computing(SMPC)protocols have been utilized in peer-to-peer manner.However,the ideal SMPC protocols could fail when some clients drop out.In this paper,we propose a robust peer-to-peer learning(RP2PL)algorithm via SMPC to resist clients dropping out.We improve the segmentbased SMPC protocol by adding a check and designing the generation method of random segments.In RP2PL,each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training.Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance. 展开更多
关键词 Federated learning Swarm learning Secure multi-party computation Peer-to-peer learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部