Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are c...Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.展开更多
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
In the context of constant deepening of cooperation in economy and trade and social communication between China's Mainland and Taiwan,deepening the cooperation of credit investigation can effectively ensure deepen...In the context of constant deepening of cooperation in economy and trade and social communication between China's Mainland and Taiwan,deepening the cooperation of credit investigation can effectively ensure deepening and stable development of trade exchanges and social communication between China's Mainland and Taiwan. This paper firstly elaborated significance of credit investigation cooperation,then compared current situation of establishment of credit investigation system,and finally put forward guiding principle and specific recommendations for credit investigation cooperation between China's Mainland and Taiwan.展开更多
Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared...Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.展开更多
基金This work was supported by Laboratory of Lingnan Modern Agriculture Project(NZ2021001)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(SKICUSAa202007)+1 种基金Natural Science Foundation of Guangdong Province(2022A1515011027,2021A1515012148)the Double Firstclass Discipline Promotion Project(2023B10564004).
文摘Precise timing of flowering in plants is critical for their growth and reproductive processes.One factor controlling flowering time is the cycle of light and darkness within a day,known as the photoperiod.Plants are classified into long-day,short-day,and day-neutral plants based on light requirements for floral initiation.Although the molecular mechanisms that govern this differentiation remain incompletely understood,studies have consistently shown that the circadian clock plays a central role in regulating photoperiod response across diverse plant species.However,there is a scarcity of reviews describing the regulatory network linking the circadian clock with photoperiodic flowering.This review summarizes that regulatory network,focusing on the distinct roles of clock genes in long-day and short-day plants.We also discuss the strategies of clock gene mutations contributing to geographic variation in longday and short-day crops.
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
基金Supported by Special Project of Fujian Provincial Department of Finance(K81MLV05A)
文摘In the context of constant deepening of cooperation in economy and trade and social communication between China's Mainland and Taiwan,deepening the cooperation of credit investigation can effectively ensure deepening and stable development of trade exchanges and social communication between China's Mainland and Taiwan. This paper firstly elaborated significance of credit investigation cooperation,then compared current situation of establishment of credit investigation system,and finally put forward guiding principle and specific recommendations for credit investigation cooperation between China's Mainland and Taiwan.
基金financially supported by the National Natural Science Foundation of China(Nos.52202236 and 5202780089)China Postdoctoral Science Foundation(Nos.2024T170300 and 2022M711232).
文摘Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.