Transplantation of probiotics to the intestine can positively regulate the gut microbiota,thereby promoting the immune system and treating various diseases.However,the harsh gastrointestinal environment and short rete...Transplantation of probiotics to the intestine can positively regulate the gut microbiota,thereby promoting the immune system and treating various diseases.However,the harsh gastrointestinal environment and short retention time in the gastrointestinal tract significantly limit the bioavailability and intestinal colonization of probiotics.Herein,we present a double-layer polysaccharide hydrogel(DPH)in the form of a double-layer structure composed of a carboxymethyl cellulose(CMCL)supramolecular inner layer and a dialdehyde alginate(DAA)cross-linked carboxymethyl chitosan(CMCS)outer layer.This doublelayer structure allows DPH to encapsulate and deliver probiotics in a targeted manner within the body.In the stomach,the cage structure of the DPH is closed,and the outer layer absorbs surrounding liquids to form a barrier to protect the probiotics from gastric fluids.In the intestine,the cage structure opens and disintegrates,releasing the probiotics.Thus,DPH endows probiotics with excellent intestine-targeted delivery,improved oral bioavailability,enhanced gastrointestinal tract tolerance,and robust mucoadhesion capacity.The encapsulated probiotics exhibit almost unchanged bioactivity in the gastrointestinal tract before release,as well as improved oral delivery.In particular,probiotics encapsulated by DPH exhibit 100.1 times higher bioavailability and 10.6 times higher mucoadhesion than free probiotics in an animal model 48 h post-treatment.In addition,with a remarkable ability to survive and be retained in the intestine,probiotics encapsulated by DPH show excellent in vitro and in vivo competition with pathogens.Notably,DAA-mediated dynamic crosslinking not only maintains the overall integrity of the hydrogels but also controls the release timing of the probiotics.Thus,it is expected that encapsulated substances(probiotics,proteins,etc.)can be delivered to specific sites of the intestinal tract by means of DPH,by controlling the dynamic covalent crosslinking.展开更多
Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most ...Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most devices have a lower rectification ratio.In this work,the Bi_(2)O_(2)Se/WSe_(2)heterojunction prepared by us has a typeⅡband alignment,which can vastly suppress the channel current through the interface barrier so that the Bi_(2)O_(2)Se/WSe_(2)heterojunction device has a large rectification ratio of about 10^(5).Meanwhile,under different gate voltage modulation,the current on/off ratio of the device changes by nearly five orders of magnitude,and the maximum current on/off ratio is expected to be achieved 106.The photocurrent measurement reveals the behavior of recombination and space charge confinement,further verifying the bidirectional rectification behavior of heterojunctions,and it also exhibits excellent performance in light response.In the future,Bi_(2)O_(2)Se/WSe_(2)heterojunction field-effect transistors have great potential to reduce the volume of integrated circuits as a bidirectional controlled switching device.展开更多
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate...In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.展开更多
Glomalin-related soil protein(GRSP)sequesters large amounts of carbon and plays important roles in maintaining terrestrial soil ecosystem functions and ecological restoration;however,little is known about GRSP variati...Glomalin-related soil protein(GRSP)sequesters large amounts of carbon and plays important roles in maintaining terrestrial soil ecosystem functions and ecological restoration;however,little is known about GRSP variation in 1-m soil profiles and its association with stand characteristics,soil properties,and climatic conditions,hindering GRSP-related degraded soil improvement and GRSP evaluation.In this study,we sampled soils from 1-m profiles from poplar(Populus spp.)shelterbelts in Northeast China.GRSP contents were 1.8–2.0 times higher in the upper 40 cm soil layers than at 40–100 cm.GRSP-related soil organic carbon(SOC)sequestration in deeper soil layers was*1.2 times higher than in surface layers.The amounts of GRSP-related nutrients were similar throughout the soil profile.A redundancy analysis showed that in both surface and deeper layers,soil properties(pH,electrical conductivity,water,SOC,and soil nutrients)explained the majority of the GRSP variation(59.5–84.2%);the second-most-important factor in GRSP regulation was climatic conditions(temperature,precipitation,and altitude),while specific shelterbelt characteristics had negligible effects(<5%).Soil depth and climate indirectly affected GRSP features via soil properties,as manifested by structural equation model analysis.Our findings demonstrate that GRSP is important for carbon storage in deep soils,regardless of shelterbelt characteristics.Future glomalin assessments should consider these vertical patterns and possible regulating mechanisms that are related to soil properties and climatic changes.展开更多
Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized...Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized the agronomic and physiological traits of rice varieties with different tolerances to low phosphorus in nutrient solution.Two varieties with strong tolerance to low phosphorus(STVs)and two with weak tolerance(WTVs)were grown at normal(NP,control)and low phosphorus(LP,1/20 of NP)concentrations.Plants grown at LP produced significantly lower grain yield than those grown at NP.WTVs yields were lower than STVs yields.Compared to NP,LP significantly increased phosphorus translocation efficiency(PTE),internal phosphorus efficiency(IPE)and phosphorus harvest index(PHI).Under the LP condition,PTE and IPE were higher for STVs than for WTVs.LP also reduced tiller number,shoot biomass,leaf area index(LAI),leaf photosynthetic rate,and mean root diameter of both kinds of varieties at the main growth stages,but to a lower extent in STVs.LP significantly increased the number of productive tillers,root biomass,root-shoot ratio,root bleeding rate,and root acid phosphatase(RAP)activity.Total root length,root oxidation activity(ROA),and root total and active absorbing surface areas for STVs were significantly increased under LP,whereas the opposite responses were observed for WTVs.Total root length,ROA,root bleeding rate,root active absorbing surface area,and RAP activity were positively and significantly correlated with grain yield,PTE,and IPE.These results suggest that the tolerance of rice varieties to a low-phosphorus growth condition is closely associated with root growth with higher biomass and activity.展开更多
In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cell...In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.展开更多
Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrof...Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.展开更多
Current research on quadrotor modeling mainly focuses on theoretical analysis methods and experimental methods,which have problems such as weak adaptability to the environment,high test costs,and long durations.Additi...Current research on quadrotor modeling mainly focuses on theoretical analysis methods and experimental methods,which have problems such as weak adaptability to the environment,high test costs,and long durations.Additionally,the PID controller,which is currently widely used in quadrotors,requires improvement in anti-interference.Therefore,the aforementioned research has considerable practical significance for the modeling and controller design of quadrotors with strong coupling and nonlinear characteristics.In the present research,an aerodynamic-parameter estimation method and an adaptive attitude control method based on the linear active disturbance rejection controller(LADRC)are designed separately.First,the motion model,dynamics model,and control allocation model of the quad-rotor are established according to the aerodynamic theory and Newton-Euler equations.Next,a more accurate attitude model of the quad-rotor is obtained by using a tool called CIFER to identify the aerodynamic parameters with large uncertainties in the frequency domain.Then,an adaptive attitude decoupling controller based on the LADRC is designed to solve the problem of the poor anti-interference ability of the quad-rotor and adjust the key control parameter b0 automatically according to the change in the moment of inertia in real time.Finally,the proposed approach is verified on a semi-physical simulation platform,and it increases the tracking speed and accuracy of the controller,as well as the anti-disturbance performance and robustness of the control system.This paper proposes an effective aerodynamic-parameter identification method using CIFER and an adaptive attitude decoupling controller with a sufficient anti-interference ability.展开更多
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial...Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.展开更多
In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-t...In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-time knowledge is necessary to enhance smooth vehicle flow.This paper proposed amore comprehensive lane changing guidance rule to investigate the status of surrounding vehicles to accommodate future vehicle-on-road collaborative environments based on these parameters 1)lane change demand and 2)treat assessment function.The collaborative relationships between vehicles are analyzed using a cellular automata model based on their location,velocity,and acceleration.We analyze and examine the relationship between the number of lanes and traffic flow when the road capacity is heavily mined via intelligent lane changing.Our analysis can further provide theoretical guidance for the selection of road expansion mode.Our proposed STCA-L is compared based on the average speed,average flow,lane changing frequency,spatial and temporal pattern of STCA,STCA-I,and STCA-S,and STCA-M under different vehicle densities.The numerical simulation results show that our proposed STCA-L provides themost flexible lane changing guidance in the multi-lanes road.Moreover,the simulated results show that the exponential growth of physical space cannot provide the corresponding increase in the average flow of vehicles.展开更多
Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzi...Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzing and concolic execution for going through complex branch conditions.In general,we observe that the execution path which comes across more and complex basic blocks may have a higher chance of containing a security bug.Based on this observation,we propose a hybrid fuzzing method assisted by static analysis for binary programs.The basic idea of our method is to prioritize seed inputs according to the complexity of their associated execution paths.For this purpose,we utilize static analysis to evaluate the complexity of each basic block and employ the hardware trace mechanism to dynamically extract the execution path for calculating the seed inputs’weights.The key advantage of our method is that our system can test binary programs efficiently by using the hardware trace and hybrid fuzzing.To evaluate the effectiveness of our method,we design and implement a prototype system,namely SHFuzz.The evaluation results show SHFuzz discovers more unique crashes on several real-world applications and the LAVA-M dataset when compared to the previous solutions.展开更多
[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extract...[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.展开更多
The development of tourism depends on the development of physical stores and the level of economic development of tourism, distribution, and analysis of the main research shop this virtual store. In this study, based ...The development of tourism depends on the development of physical stores and the level of economic development of tourism, distribution, and analysis of the main research shop this virtual store. In this study, based on China's largest e-commerce website --- Taobao C2C data to the country's 31 provinces, autonomous regions and municipalities (excluding Hung Kong, Macao and Taiwan) for the study, and regression analysis using ArcGIS software tools, from the provincial tourism C2C e-commerce Factors affecting the development of conduct Regression analysis, and An Empirical Study of the geographical distribution of the electrons. The results showed that the development of China's tourism e-commerce C2C level and the level of tourism development and local economic development are very relevant. The degree of economic development and the level of development of tourism and travel Taobao C2C e number of shops are highly correlated.展开更多
Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms ...Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.展开更多
层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳...层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳定的富含Fe^(2+)的层状材料,实现了表面和界面的同步改性,并实现了超低的热导率.具体而言,系统的X射线吸收精细结构(XAFS)分析和电子能量损失光谱(EELS)分析表明,碱金属原子的层间插层和表面缺陷的引入诱导了大量Fe^(2+)的存在,从而增强了其非谐波性和声子散射.此外,声子态密度(PDOS)分布也提供了确凿的证据,证明了散射概率的提高和声子模式整体的软化.所制得的层状无机材料Fe(III)_(1−n)Fe(II)_(n)O_(1−x)Cl[K^(+)]_(m)不仅结构稳定,而且在298 K时的热导率比原始FeOCl降低了近60%,低至0.29 W m^(−1) K^(−1),这在层状无机材料中是极低的.这项研究为低导热层状材料的设计提供了新的视角.展开更多
基金supported by the National Natural Science Foundation of China (U21A20271)the China Agriculture Research System of the MOF and MARA (CARS-48)+2 种基金the Natural Science Foundation of Shandong Province (ZR2020JQ15)the Taishan Scholar Project of Shandong Province (tsqn201812020)the Fundamental Research Funds for the Central Universities (201941002).
文摘Transplantation of probiotics to the intestine can positively regulate the gut microbiota,thereby promoting the immune system and treating various diseases.However,the harsh gastrointestinal environment and short retention time in the gastrointestinal tract significantly limit the bioavailability and intestinal colonization of probiotics.Herein,we present a double-layer polysaccharide hydrogel(DPH)in the form of a double-layer structure composed of a carboxymethyl cellulose(CMCL)supramolecular inner layer and a dialdehyde alginate(DAA)cross-linked carboxymethyl chitosan(CMCS)outer layer.This doublelayer structure allows DPH to encapsulate and deliver probiotics in a targeted manner within the body.In the stomach,the cage structure of the DPH is closed,and the outer layer absorbs surrounding liquids to form a barrier to protect the probiotics from gastric fluids.In the intestine,the cage structure opens and disintegrates,releasing the probiotics.Thus,DPH endows probiotics with excellent intestine-targeted delivery,improved oral bioavailability,enhanced gastrointestinal tract tolerance,and robust mucoadhesion capacity.The encapsulated probiotics exhibit almost unchanged bioactivity in the gastrointestinal tract before release,as well as improved oral delivery.In particular,probiotics encapsulated by DPH exhibit 100.1 times higher bioavailability and 10.6 times higher mucoadhesion than free probiotics in an animal model 48 h post-treatment.In addition,with a remarkable ability to survive and be retained in the intestine,probiotics encapsulated by DPH show excellent in vitro and in vivo competition with pathogens.Notably,DAA-mediated dynamic crosslinking not only maintains the overall integrity of the hydrogels but also controls the release timing of the probiotics.Thus,it is expected that encapsulated substances(probiotics,proteins,etc.)can be delivered to specific sites of the intestinal tract by means of DPH,by controlling the dynamic covalent crosslinking.
基金This work was supported by the National Natural Science Foundation of China(61704054,92161115,62374099,and 62022047)the Fundamental Research Funds for the Central Universities(JB2020MS042 and JB2019MS051).
文摘Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most devices have a lower rectification ratio.In this work,the Bi_(2)O_(2)Se/WSe_(2)heterojunction prepared by us has a typeⅡband alignment,which can vastly suppress the channel current through the interface barrier so that the Bi_(2)O_(2)Se/WSe_(2)heterojunction device has a large rectification ratio of about 10^(5).Meanwhile,under different gate voltage modulation,the current on/off ratio of the device changes by nearly five orders of magnitude,and the maximum current on/off ratio is expected to be achieved 106.The photocurrent measurement reveals the behavior of recombination and space charge confinement,further verifying the bidirectional rectification behavior of heterojunctions,and it also exhibits excellent performance in light response.In the future,Bi_(2)O_(2)Se/WSe_(2)heterojunction field-effect transistors have great potential to reduce the volume of integrated circuits as a bidirectional controlled switching device.
基金the National Natural Science Foundation of China(Grant No.51305372)the Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City(Grant No.TCIMI201803)the Project of the 2011 Collaborative Innovation Center of Fujian Province(Grant No.2016BJC019).
文摘In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.
基金supported financially by China’s National Foundation of Natural Sciences(41877324,41730641)Fundamental Research Funds for the Central Universities(2572017DG04,2572017EA03)+1 种基金13-5 Key Research and Development Project from China Ministry of Science and Technology(2016YFA0600802)Heilongjiang Province for Distinguished Young Scholars(JC201401)
文摘Glomalin-related soil protein(GRSP)sequesters large amounts of carbon and plays important roles in maintaining terrestrial soil ecosystem functions and ecological restoration;however,little is known about GRSP variation in 1-m soil profiles and its association with stand characteristics,soil properties,and climatic conditions,hindering GRSP-related degraded soil improvement and GRSP evaluation.In this study,we sampled soils from 1-m profiles from poplar(Populus spp.)shelterbelts in Northeast China.GRSP contents were 1.8–2.0 times higher in the upper 40 cm soil layers than at 40–100 cm.GRSP-related soil organic carbon(SOC)sequestration in deeper soil layers was*1.2 times higher than in surface layers.The amounts of GRSP-related nutrients were similar throughout the soil profile.A redundancy analysis showed that in both surface and deeper layers,soil properties(pH,electrical conductivity,water,SOC,and soil nutrients)explained the majority of the GRSP variation(59.5–84.2%);the second-most-important factor in GRSP regulation was climatic conditions(temperature,precipitation,and altitude),while specific shelterbelt characteristics had negligible effects(<5%).Soil depth and climate indirectly affected GRSP features via soil properties,as manifested by structural equation model analysis.Our findings demonstrate that GRSP is important for carbon storage in deep soils,regardless of shelterbelt characteristics.Future glomalin assessments should consider these vertical patterns and possible regulating mechanisms that are related to soil properties and climatic changes.
基金supported by the National Key Research and Development Program(2016YFD0300206-4,2018YFD0300800)the National Natural Science Foundation of China(31461143015,31771710,31871559)+4 种基金Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)Six Talent Peaks Project in Jiangsu Province(SWYY-151)the Jiangsu Provincial Key Research and Development Program(Modern Agriculture)(BE2015320)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Top Talent Supporting Program of Yangzhou University(2015-01)。
文摘Phosphorus use efficiency(PUE)can be improved through cultivation techniques and breeding.However,little is known about rice(Oryza sativa L.)agronomic and physiological traits associated with high PUE.We characterized the agronomic and physiological traits of rice varieties with different tolerances to low phosphorus in nutrient solution.Two varieties with strong tolerance to low phosphorus(STVs)and two with weak tolerance(WTVs)were grown at normal(NP,control)and low phosphorus(LP,1/20 of NP)concentrations.Plants grown at LP produced significantly lower grain yield than those grown at NP.WTVs yields were lower than STVs yields.Compared to NP,LP significantly increased phosphorus translocation efficiency(PTE),internal phosphorus efficiency(IPE)and phosphorus harvest index(PHI).Under the LP condition,PTE and IPE were higher for STVs than for WTVs.LP also reduced tiller number,shoot biomass,leaf area index(LAI),leaf photosynthetic rate,and mean root diameter of both kinds of varieties at the main growth stages,but to a lower extent in STVs.LP significantly increased the number of productive tillers,root biomass,root-shoot ratio,root bleeding rate,and root acid phosphatase(RAP)activity.Total root length,root oxidation activity(ROA),and root total and active absorbing surface areas for STVs were significantly increased under LP,whereas the opposite responses were observed for WTVs.Total root length,ROA,root bleeding rate,root active absorbing surface area,and RAP activity were positively and significantly correlated with grain yield,PTE,and IPE.These results suggest that the tolerance of rice varieties to a low-phosphorus growth condition is closely associated with root growth with higher biomass and activity.
基金financial support from National Key Research&Development Project(2016YFE0126900)the National Natural Science Foundation of China(51672095)+2 种基金Hubei Province(2018AAA057)the EPSRC Capital for Great Technologies Grant EP/L017008/1the China Scholarship Council for funding(201806160178)。
文摘In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41730641)Project from Ministry of Science and Technology of China(Basic Research project:2014FY110600 and 13-5 Project:2016YFA0600802).
文摘Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.
基金Supported by National Natural Science Foundation of China(Grant No.61501493).
文摘Current research on quadrotor modeling mainly focuses on theoretical analysis methods and experimental methods,which have problems such as weak adaptability to the environment,high test costs,and long durations.Additionally,the PID controller,which is currently widely used in quadrotors,requires improvement in anti-interference.Therefore,the aforementioned research has considerable practical significance for the modeling and controller design of quadrotors with strong coupling and nonlinear characteristics.In the present research,an aerodynamic-parameter estimation method and an adaptive attitude control method based on the linear active disturbance rejection controller(LADRC)are designed separately.First,the motion model,dynamics model,and control allocation model of the quad-rotor are established according to the aerodynamic theory and Newton-Euler equations.Next,a more accurate attitude model of the quad-rotor is obtained by using a tool called CIFER to identify the aerodynamic parameters with large uncertainties in the frequency domain.Then,an adaptive attitude decoupling controller based on the LADRC is designed to solve the problem of the poor anti-interference ability of the quad-rotor and adjust the key control parameter b0 automatically according to the change in the moment of inertia in real time.Finally,the proposed approach is verified on a semi-physical simulation platform,and it increases the tracking speed and accuracy of the controller,as well as the anti-disturbance performance and robustness of the control system.This paper proposes an effective aerodynamic-parameter identification method using CIFER and an adaptive attitude decoupling controller with a sufficient anti-interference ability.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFC3202901)Natural Science Foundation of China(Grant No.51879121)+1 种基金Jiangsu Provincial Primary Research&Development Plan(Grant No.BE2019009-1)China Scholarship Council(Grant No.202108690020).
文摘Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.
基金supported in part by the National Natural Science Foundation of China(No.51905405)Basic Research Program of Natural Science of Shaanxi Province(No.2022JM-407)Guiding Program of Science and Technology of China Textile Industry Federation(No.2020106).
文摘In a multi-lane area,the increasing randomness of lane changes contributes to traffic insecurity and local traffic flow instability.A study on safe lane shifting activity that focuses on threat assessment under real-time knowledge is necessary to enhance smooth vehicle flow.This paper proposed amore comprehensive lane changing guidance rule to investigate the status of surrounding vehicles to accommodate future vehicle-on-road collaborative environments based on these parameters 1)lane change demand and 2)treat assessment function.The collaborative relationships between vehicles are analyzed using a cellular automata model based on their location,velocity,and acceleration.We analyze and examine the relationship between the number of lanes and traffic flow when the road capacity is heavily mined via intelligent lane changing.Our analysis can further provide theoretical guidance for the selection of road expansion mode.Our proposed STCA-L is compared based on the average speed,average flow,lane changing frequency,spatial and temporal pattern of STCA,STCA-I,and STCA-S,and STCA-M under different vehicle densities.The numerical simulation results show that our proposed STCA-L provides themost flexible lane changing guidance in the multi-lanes road.Moreover,the simulated results show that the exponential growth of physical space cannot provide the corresponding increase in the average flow of vehicles.
基金the National Key Research and Development Program of China under Grant No.2016QY07X1404National Natural Science Foundation of China(NSFC)under Grant No.61602035 and 61772078+1 种基金Beijing Science and Technology Project under Grant No.Z191100007119010,CCF-NSFOCUS Kun-Peng Scientific Research FoundationOpen Found of Key Laboratory of Network Assessment Technology,Institute of Information Engineering,Chinese Academy of Sciences.
文摘Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzing and concolic execution for going through complex branch conditions.In general,we observe that the execution path which comes across more and complex basic blocks may have a higher chance of containing a security bug.Based on this observation,we propose a hybrid fuzzing method assisted by static analysis for binary programs.The basic idea of our method is to prioritize seed inputs according to the complexity of their associated execution paths.For this purpose,we utilize static analysis to evaluate the complexity of each basic block and employ the hardware trace mechanism to dynamically extract the execution path for calculating the seed inputs’weights.The key advantage of our method is that our system can test binary programs efficiently by using the hardware trace and hybrid fuzzing.To evaluate the effectiveness of our method,we design and implement a prototype system,namely SHFuzz.The evaluation results show SHFuzz discovers more unique crashes on several real-world applications and the LAVA-M dataset when compared to the previous solutions.
文摘[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.
文摘The development of tourism depends on the development of physical stores and the level of economic development of tourism, distribution, and analysis of the main research shop this virtual store. In this study, based on China's largest e-commerce website --- Taobao C2C data to the country's 31 provinces, autonomous regions and municipalities (excluding Hung Kong, Macao and Taiwan) for the study, and regression analysis using ArcGIS software tools, from the provincial tourism C2C e-commerce Factors affecting the development of conduct Regression analysis, and An Empirical Study of the geographical distribution of the electrons. The results showed that the development of China's tourism e-commerce C2C level and the level of tourism development and local economic development are very relevant. The degree of economic development and the level of development of tourism and travel Taobao C2C e number of shops are highly correlated.
基金supported by the National Natural Science Foundation of China(21991103,21991104,22008074,22378117)the Fundamental Research Funds for the Central Universities。
文摘Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.
基金supported by the Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,22321001 and 12147105)+5 种基金the USTC Research Funds of the Double FirstClass Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Fellowship of China Postdoctoral Science Foundation(2022M710141)the Open Foundation of the Key Lab(Center)of Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘层状无机材料的弱层间耦合和大面积表面为构建低导热性无机固体材料提供了基本框架.合成具有足够散射和非谐波性的稳定层状材料,从而降低热导率,仍是一项挑战.本文在层状无机FeOCl材料体系中,通过一步氧化还原反应成功获得了一种结构稳定的富含Fe^(2+)的层状材料,实现了表面和界面的同步改性,并实现了超低的热导率.具体而言,系统的X射线吸收精细结构(XAFS)分析和电子能量损失光谱(EELS)分析表明,碱金属原子的层间插层和表面缺陷的引入诱导了大量Fe^(2+)的存在,从而增强了其非谐波性和声子散射.此外,声子态密度(PDOS)分布也提供了确凿的证据,证明了散射概率的提高和声子模式整体的软化.所制得的层状无机材料Fe(III)_(1−n)Fe(II)_(n)O_(1−x)Cl[K^(+)]_(m)不仅结构稳定,而且在298 K时的热导率比原始FeOCl降低了近60%,低至0.29 W m^(−1) K^(−1),这在层状无机材料中是极低的.这项研究为低导热层状材料的设计提供了新的视角.