The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.展开更多
Many chronic disease prediction methods have been proposed to predict or evaluate diabetes through artificial neural network.However,due to the complexity of the human body,there are still many challenges to face in t...Many chronic disease prediction methods have been proposed to predict or evaluate diabetes through artificial neural network.However,due to the complexity of the human body,there are still many challenges to face in that process.One of them is how to make the neural network prediction model continuously adapt and learn disease data of different patients,online.This paper presents a novel chronic disease prediction system based on an incremental deep neural network.The propensity of users suffering from chronic diseases can continuously be evaluated in an incremental manner.With time,the system can predict diabetes more and more accurately by processing the feedback information.Many diabetes prediction studies are based on a common dataset,the Pima Indians diabetes dataset,which has only eight input attributes.In order to determine the correlation between the pathological characteristics of diabetic patients and their daily living resources,we have established an in-depth cooperation with a hospital.A Chinese diabetes dataset with 575 diabetics was created.Users’data collected by different sensors were used to train the network model.We evaluated our system using a real-world diabetes dataset to confirm its effectiveness.The experimental results show that the proposed system can not only continuously monitor the users,but also give early warning of physiological data that may indicate future diabetic ailments.展开更多
This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker pro...This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker product is used in the received array signal of the multiple-delay output model,the frequency-angle steering vector can be reconstructed as the product of the frequency steering vector and the angle steering vector.The frequency of the incoming signal is then obtained by searching for the minimal eigenvalue among the smallest eigenvalues that depend on the frequency parameters but are irrelevant to the DOAs.Subsequently,the DOA related to the selected frequency is acquired through some operations on the minimal eigenvector according to the Rayleigh–Ritz theorem,which realizes the natural pairing of frequencies and DOAs.Furthermore,the proposed method can not only distinguish multiple sources,but also effectively deal with other arrays.The effectiveness and superiority of the proposed algorithm are further analyzed by simulations.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.61702226)the 111 Project(B12018)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20170200)the Fundamental Research Funds for the Central Universities(No.JUSRP11854).
文摘The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.
基金funding from the Humanities and Social Sciences Projects of the Ministry of Education(Grant No.18YJC760112,Bin Yang)the Social Science Fund of Jiangsu Province(Grant No.18YSD002,Bin Yang)Open Fund of Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle Infrastructure Systems(Changsha University of Science and Technology)(Grant No.kfj180402,Lingyun Xiang).
文摘Many chronic disease prediction methods have been proposed to predict or evaluate diabetes through artificial neural network.However,due to the complexity of the human body,there are still many challenges to face in that process.One of them is how to make the neural network prediction model continuously adapt and learn disease data of different patients,online.This paper presents a novel chronic disease prediction system based on an incremental deep neural network.The propensity of users suffering from chronic diseases can continuously be evaluated in an incremental manner.With time,the system can predict diabetes more and more accurately by processing the feedback information.Many diabetes prediction studies are based on a common dataset,the Pima Indians diabetes dataset,which has only eight input attributes.In order to determine the correlation between the pathological characteristics of diabetic patients and their daily living resources,we have established an in-depth cooperation with a hospital.A Chinese diabetes dataset with 575 diabetics was created.Users’data collected by different sensors were used to train the network model.We evaluated our system using a real-world diabetes dataset to confirm its effectiveness.The experimental results show that the proposed system can not only continuously monitor the users,but also give early warning of physiological data that may indicate future diabetic ailments.
基金supported by the colleges and universities of the Key Projects Scientic Research Plan of Henan Province(19B413005).
文摘This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker product is used in the received array signal of the multiple-delay output model,the frequency-angle steering vector can be reconstructed as the product of the frequency steering vector and the angle steering vector.The frequency of the incoming signal is then obtained by searching for the minimal eigenvalue among the smallest eigenvalues that depend on the frequency parameters but are irrelevant to the DOAs.Subsequently,the DOA related to the selected frequency is acquired through some operations on the minimal eigenvector according to the Rayleigh–Ritz theorem,which realizes the natural pairing of frequencies and DOAs.Furthermore,the proposed method can not only distinguish multiple sources,but also effectively deal with other arrays.The effectiveness and superiority of the proposed algorithm are further analyzed by simulations.