Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through...Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.展开更多
Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of ...Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.展开更多
Optical solitons in mode-locked fiber lasers and optical communication links have various applications. Thestudy of transmission modes of optical solitons necessitates the investigation of the relationship between the...Optical solitons in mode-locked fiber lasers and optical communication links have various applications. Thestudy of transmission modes of optical solitons necessitates the investigation of the relationship between theequation parameters and soliton evolution employing deep learning techniques. However, the existing identificationmodels exhibit a limited parameter domain search range and are significantly influenced by initialization.Consequently, they often result in divergence toward incorrect parameter values. This study harnessed reinforcementlearning to revamp the iterative process of the parameter identification model. By developing a two-stageoptimization strategy, the model could conduct an accurate parameter search across arbitrary domains. Theinvestigation involved several experiments on various standard and higher-order equations, illustrating that theinnovative model overcame the impact of initialization on the parameter search, and the identified parametersare guided toward their correct values. The enhanced model markedly improves the experimental efficiency andholds significant promise for advancing the research of soliton propagation dynamics and addressing intricatescenarios.展开更多
Mg-Y cast alloy shows excellent ductility(elongation to failure>15%)compared with pure Mg and commercial Mg cast alloys.By monitoring the microstructure evolution during an in situ tensile test of a Mg-2.5 wt%Y all...Mg-Y cast alloy shows excellent ductility(elongation to failure>15%)compared with pure Mg and commercial Mg cast alloys.By monitoring the microstructure evolution during an in situ tensile test of a Mg-2.5 wt%Y alloy,we identify the activation of prismatic<c>slip,which is rare in Mg.Synchrotron X-ray micro-beam Laue diffraction(μ-Laue)and transmission electron microscopy revealed the morphology of prismatic<c>slip bands and individual<c>dislocations.Density functional theory and molecular dynamics calculations indicate that solute Y can significantly reduce the stacking fault energy(SFE)along<c>direction on prismatic plane in Mg lattice and thus facilitate the nucleation of<c>dislocations during deformation.The presence of free<c>dislocations in the Mg lattice can also lead to nucleation of{10–12}twins even under unfavorable geometric conditions.展开更多
A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma curren...A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.展开更多
Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features...Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.展开更多
According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D simila...According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.展开更多
The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K wit...The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K with the reduction ratio of 101:1.The grains were dynamically recrystallized after the extrusion process.Moreover,the(0002)pole figure of Mg-Mn-Ce alloy developed a splitting of pronounced basal texture.The mechanical properties were different due to different angles between c-axis and loading direction(0°,45°and 90°)in the tensile tests.This significantly induces an asymmetry in the yield behavior.The Mg-Mn-Ce alloy exhibits a classical dimple structure as a result of slip accumulation and ductile tear.展开更多
The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450-525℃ and strain rates of 3.0 s^(−1)and 0.15 s^(−1)were investigated by tensile tests.Zero ductility of alloy appeared at 500℃ with...The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450-525℃ and strain rates of 3.0 s^(−1)and 0.15 s^(−1)were investigated by tensile tests.Zero ductility of alloy appeared at 500℃ with a strain rate of 0.15 s^(−1),while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525℃ with a strain rate of 3.0 s^(−1).The results indicated that the lower strain rate accelerated the arrival of zero ductility.As the temperature increased,the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces.The existence of the low-melting composite ofβ-Mg_(17)Al_(12) and Al_(8)Mn_(5) particles segregated near the Mg_(17)Al_(12) phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures.Furthermore,microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.展开更多
The high cost,scarcity,and poor stability of precious-metal-based catalysts have hindered their extensive application in energy conversion and storage.This stimulates the search for earth-abundant alternatives to repl...The high cost,scarcity,and poor stability of precious-metal-based catalysts have hindered their extensive application in energy conversion and storage.This stimulates the search for earth-abundant alternatives to replace noble metal electrocatalysts.Hence,in this study,we investigate a novel and low-cost bifunctional electrocatalyst consisting of ZnCoMnO_(4) anchored on nitrogen-doped graphene oxide(ZnCoMnO_(4)/N-rGO).Benefiting from the strong Co-N interaction in ZnCoMnO_(4) and the coupled conductive N-rGO,the catalysts exhibit high electrocatalytic activity.Moreover,density functional theory calculations support the dominant role of the strong Co-N electronic interaction,which leads to ZnCoMnO_(4)/N-rGO having more favorable binding energies with O2 and H_(2) O,resulting in fast reaction kinetics.The obtained ZnCoMnO_(4)/N-rGO electrocatalyst exhibits superb bifunctional activity,with a half-wave potential of 0.83 V for the oxygen reduction reaction and a low onset potential of 1.57 V for the oxygen evolution reaction in 0.1 M KOH solution.Furthermore,a Zn-air battery driven by the ZnCoMnO_(4)/N-rGO catalyst shows remarkable discharge/charge performance,with a power density of 138.52 mW cm^(-2) and longterm cycling stability for 48 h.This work provides a promising multifunctional electrocatalyst based on non-noble metals for the storage and conversion of renewable energy.展开更多
Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of ma...Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of materials above 100 GPa,namely,X-ray diffraction(XRD),especially for lowZ materials,remains nontrivial in the ultrahigh-pressure region,even with the availability of brilliant synchrotron X-ray sources.In thiswork,we performa systematic study,choosing hydrogen(the lowest X-ray scatterer)as the subject,to understand how to better perform XRD measurements of low Z materials at multimegabar pressures.The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254GPa at room temperature[C.Ji et al.,Nature 573,558–562(2019)].Wepresent our discoveries and experienceswith regard to several aspects of thiswork,namely,diamond anvil selection,sample configuration for ultrahigh-pressure XRDstudies,XRDdiagnostics for low Z materials,and related issues in data interpretation and pressure calibration.Webelieve that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures,eventually testing structural models of metallic hydrogen.展开更多
Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the com...Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the combined impact of coronavirus disease 2019(COVID-19)and diabetes have not yet been elucidated,and effective treatment options for SARS-Co V-2-infected diabetic patients remain limited.To investigate the disease pathogenesis,K18-h ACE2 transgenic(h ACE2^(Tg))mice with a leptin receptor deficiency(h ACE2-Lepr^(-/-))and high-fat diet(h ACE2-HFD)background were generated.The two mouse models were intranasally infected with a 5×10^(5) median tissue culture infectious dose(TCID_(50))of SARSCo V-2,with serum and lung tissue samples collected at 3days post-infection.The h ACE2-Lepr^(-/-)mice were then administered a combination of low-molecular-weight heparin(LMWH)(1 mg/kg or 5 mg/kg)and insulin via subcutaneous injection prior to intranasal infection with1×10^(4) TCID_(50)of SARS-Co V-2.Daily drug administration continued until the euthanasia of the mice.Analyses of viral RNA loads,histopathological changes in lung tissue,and inflammation factors were conducted.Results demonstrated similar SARS-Co V-2 susceptibility in h ACE2^(Tg)mice under both lean(chow diet)and obese(HFD)conditions.However,compared to the h ACE2-Lepr^(+/+)mice,h ACE2-Lepr^(-/-)mice exhibited more severe lung injury,enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α(HIF-1α),and increased apoptosis.Moreover,combined LMWH and insulin treatment effectively reduced disease progression and severity,attenuated lung pathological changes,and mitigated inflammatory responses.In conclusion,preexisting diabetes can lead to more severe lung damage upon SARS-Co V-2 infection,and LMWH may be a valuable therapeutic approach for managing COVID-19patients with diabetes.展开更多
Ameloblasts are specialized cells derived from the dental epithelium that produce enamel,a hierarchically structured tissue comprised of highly elongated hydroxylapatite(OHAp)crystallites.The unique function of the ep...Ameloblasts are specialized cells derived from the dental epithelium that produce enamel,a hierarchically structured tissue comprised of highly elongated hydroxylapatite(OHAp)crystallites.The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet,partly due to limitations with in vitro experimental models.Herein,we demonstrate the ability to generate mineralizing dental epithelial organoids(DEOs)from adult dental epithelial stem cells(aDESCs)isolated from mouse incisor tissues.DEOs expressed ameloblast markers,could be maintained for more than five months(11 passages)in vitro in media containing modulators of Wnt,Egf,Bmp,Fgf and Notch signaling pathways,and were amenable to cryostorage.When transplanted underneath murine kidney capsules,organoids produced OHAp crystallites similar in composition,size,and shape to mineralized dental tissues,including some enamel-like elongated crystals.DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium,which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.展开更多
Q-switched lasers have occupied important roles in industrial applications such as laser marking,engraving,welding,and cutting due to their advantages in high pulse energy.Here,SnS_(2)-based Q-switched lasers are impl...Q-switched lasers have occupied important roles in industrial applications such as laser marking,engraving,welding,and cutting due to their advantages in high pulse energy.Here,SnS_(2)-based Q-switched lasers are implemented.Consid-ering that SnS_(2) inherits the thickness sensitive optical characteristics of TMD,three kinds of SnS2 with different thick-ness are characterized in terms of nonlinearity and used to realize the Q-switched pulses under consistent implementa-tion conditions for comparison tests.According to the results,the influence of thickness variation on the nonlinear per-formance of saturable absorber,such as modulation depth and absorption intensity,and the influence on the correspond-ing laser are analyzed.In addition,compared with other traditional saturable absorbers,the advantage of SnS_(2) in realiz-ing ultrashort pulses is also noticed.Our work explores the thickness-dependent nonlinear optical properties of SnS_(2),and the rules found is of great reference value for the establishment of target lasers.展开更多
[Objectives]To optimize the extraction process of polysaccharide in Embelia parviflora Wall.by response surface methodology,and to study the antioxidant activity in vitro of polysaccharide in E.parviflora,so as to pro...[Objectives]To optimize the extraction process of polysaccharide in Embelia parviflora Wall.by response surface methodology,and to study the antioxidant activity in vitro of polysaccharide in E.parviflora,so as to provide a basis for the further development and utilization of E.parviflora.[Methods]The solid-to-liquid ratio,extraction temperature,extraction time and extraction times were used as single factors to investigate the effects.On this basis,the response surface methodology(RSM)was used to optimize the extraction process of polysaccharide in E.parviflora.DPPH and ABTS free radicals were used to investigate the antioxidant capacity of polysaccharide in E.parviflora.[Results]The optimal solid-to-liquid ratio for extraction of polysaccharide from E.parviflora was 32∶1(mL/g),extraction temperature was 77℃,and extraction time was 36 min.The IC50 values of DPPH and ABTS were 0.04 and 0.03 mg/mL,respectively.[Conclusions]The optimized extraction process of polysaccharide in E.parviflora is stable,the extraction rate is high,and has strong antioxidant activity.It is expected to provide a reference for the industrial extraction of polysaccharide from E.parviflora.展开更多
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped b...Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology.In this study,a comprehensive solution of ultrasensitive proteome technology(CS-UPT)was developed for single-cell or low-input mouse oocyte/embryo samples.The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands.Using the deep coverage route,we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition,including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample.Moreover,significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.展开更多
This study addresses long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law,the convolution kernel of which entails an extremely weak dissipation in the thermal law...This study addresses long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law,the convolution kernel of which entails an extremely weak dissipation in the thermal law.By using the semigroup theory,we first establish the existence of global weak and strong solutions as well as their continuous dependence on the initial data in appropriate function spaces,under suitable assumptions on the weight of time delay term,the external force term and the nonlinear term.We then prove that the system is quasi-stable and has a gradient on bounded variant sets,and obtain the existence of a global attractor whose fractal dimension is finite.A result on the exponential attractor of the system is also proved.展开更多
Anthocyanins are valuable compounds in red-fleshed apples.The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway.However,other transcription factors are key components of the c...Anthocyanins are valuable compounds in red-fleshed apples.The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway.However,other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized.In this study,we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis.The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins.In binding experiments,we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT.Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter.Additionally,the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA.Therefore,we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12075316)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.21XNH091)(Q.R.)。
文摘Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.
基金Project supported by the Anhui Provincial Natural Science Foundation(Grant No.2208085QE121)the Key Research&Development Plan of Anhui Province(Grant No.2022a05020016)+1 种基金the University Natural Science Research Project of Anhui Province(Grant No.2023AH051084)the National Natural Science Foundation of China(Grant No.52071078)。
文摘Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.
基金National Key Research and Development Program of China(Grant No.2022YFA1604200)Beijing Municipal Science and Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant No.Z231100006623006).
文摘Optical solitons in mode-locked fiber lasers and optical communication links have various applications. Thestudy of transmission modes of optical solitons necessitates the investigation of the relationship between theequation parameters and soliton evolution employing deep learning techniques. However, the existing identificationmodels exhibit a limited parameter domain search range and are significantly influenced by initialization.Consequently, they often result in divergence toward incorrect parameter values. This study harnessed reinforcementlearning to revamp the iterative process of the parameter identification model. By developing a two-stageoptimization strategy, the model could conduct an accurate parameter search across arbitrary domains. Theinvestigation involved several experiments on various standard and higher-order equations, illustrating that theinnovative model overcame the impact of initialization on the parameter search, and the identified parametersare guided toward their correct values. The enhanced model markedly improves the experimental efficiency andholds significant promise for advancing the research of soliton propagation dynamics and addressing intricatescenarios.
基金financially supported by the National Natural Science Foundation of China (Nos. 51671127, 51631006, 51971168)sponsored by the Shanghai Rising-Star Programsupported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357
文摘Mg-Y cast alloy shows excellent ductility(elongation to failure>15%)compared with pure Mg and commercial Mg cast alloys.By monitoring the microstructure evolution during an in situ tensile test of a Mg-2.5 wt%Y alloy,we identify the activation of prismatic<c>slip,which is rare in Mg.Synchrotron X-ray micro-beam Laue diffraction(μ-Laue)and transmission electron microscopy revealed the morphology of prismatic<c>slip bands and individual<c>dislocations.Density functional theory and molecular dynamics calculations indicate that solute Y can significantly reduce the stacking fault energy(SFE)along<c>direction on prismatic plane in Mg lattice and thus facilitate the nucleation of<c>dislocations during deformation.The presence of free<c>dislocations in the Mg lattice can also lead to nucleation of{10–12}twins even under unfavorable geometric conditions.
文摘A three-fluid equilibrium plasma with bulk plasma and energetic electrons has been observed on the Xuanlong-50(EXL-50) spherical torus, where the energetic electrons play a crucial role in sustaining the plasma current and pressure. In this study, the equilibrium of a multi-fluid plasma was investigated by analyzing the relationship between the external vertical magnetic field(B_(V)),plasma current(I_(p)), the poloidal ratio(β_(p)) and the Shafranov formula. Remarkably, our research demonstrates some validity of the Shafranov formula in the presence of multi-fluid plasma in EXL-50 spherical torus. This finding holds significant importance for future reactors as it allows for differentiation between alpha particles and background plasma. The study of multi-fluid plasma provides a significant reference value for the equilibrium reconstruction of burning plasma involving alpha particles.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600601]the Guangdong Basic and Applied Basic Research Foundation[grant number 2020A1515011572]the National Natural Science Foundation of China[grant number 41605027]。
文摘Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.
基金Acknowledgments This work is supported by the National Nature Science Foundation of China (51374011).
文摘According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.
基金The authors are grateful for the financial supports from National Natural Science Foundation of China(51171212)Chongqing Science and Technology Commission(CSTC2012JJJQ50001,CSTC2013jcyjC60001,cstc2012ggB50003)+1 种基金The National Science and Technology Program of China(2013DFA71070)the Fundamental Research Funds for the Central Universities(CDJZR13138801).
文摘The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K with the reduction ratio of 101:1.The grains were dynamically recrystallized after the extrusion process.Moreover,the(0002)pole figure of Mg-Mn-Ce alloy developed a splitting of pronounced basal texture.The mechanical properties were different due to different angles between c-axis and loading direction(0°,45°and 90°)in the tensile tests.This significantly induces an asymmetry in the yield behavior.The Mg-Mn-Ce alloy exhibits a classical dimple structure as a result of slip accumulation and ductile tear.
基金financially supported by the National Natural Science Foundation of China (Nos. U1910213, 52001037, and U207601)the Chongqing Science and Technology Commission, China (Nos. cstc2020jcyj-msxmX0184 and cstc2019jscx-mbdx X0031)+2 种基金the University Innovation Research Group of Chongqing, China (No. CXQT20023)the Qinghai Scientific and Technological Plan Projects, China (No. 2018-GX-A1)the Scientific Research Foundation of Chongqing University of Technology, China
文摘The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450-525℃ and strain rates of 3.0 s^(−1)and 0.15 s^(−1)were investigated by tensile tests.Zero ductility of alloy appeared at 500℃ with a strain rate of 0.15 s^(−1),while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525℃ with a strain rate of 3.0 s^(−1).The results indicated that the lower strain rate accelerated the arrival of zero ductility.As the temperature increased,the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces.The existence of the low-melting composite ofβ-Mg_(17)Al_(12) and Al_(8)Mn_(5) particles segregated near the Mg_(17)Al_(12) phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures.Furthermore,microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.
基金financially supported by the National Natural Science Foundation of China for Youths(No.21601067,21701057)the China Postdoctoral Science Foundation(No.2020 M673037)a project funded by the Priority Academic Program Development of the Jiangsu Higher Education Institutions。
文摘The high cost,scarcity,and poor stability of precious-metal-based catalysts have hindered their extensive application in energy conversion and storage.This stimulates the search for earth-abundant alternatives to replace noble metal electrocatalysts.Hence,in this study,we investigate a novel and low-cost bifunctional electrocatalyst consisting of ZnCoMnO_(4) anchored on nitrogen-doped graphene oxide(ZnCoMnO_(4)/N-rGO).Benefiting from the strong Co-N interaction in ZnCoMnO_(4) and the coupled conductive N-rGO,the catalysts exhibit high electrocatalytic activity.Moreover,density functional theory calculations support the dominant role of the strong Co-N electronic interaction,which leads to ZnCoMnO_(4)/N-rGO having more favorable binding energies with O2 and H_(2) O,resulting in fast reaction kinetics.The obtained ZnCoMnO_(4)/N-rGO electrocatalyst exhibits superb bifunctional activity,with a half-wave potential of 0.83 V for the oxygen reduction reaction and a low onset potential of 1.57 V for the oxygen evolution reaction in 0.1 M KOH solution.Furthermore,a Zn-air battery driven by the ZnCoMnO_(4)/N-rGO catalyst shows remarkable discharge/charge performance,with a power density of 138.52 mW cm^(-2) and longterm cycling stability for 48 h.This work provides a promising multifunctional electrocatalyst based on non-noble metals for the storage and conversion of renewable energy.
基金This research was supported by the National Natural Science Foundation of China under Award No.U1930401the Department of Energy(DOE),Office of Basic Energy Science,Division of Materials Sciences and Engineering under Award No.DE-FG02-99ER45775
文摘Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of materials above 100 GPa,namely,X-ray diffraction(XRD),especially for lowZ materials,remains nontrivial in the ultrahigh-pressure region,even with the availability of brilliant synchrotron X-ray sources.In thiswork,we performa systematic study,choosing hydrogen(the lowest X-ray scatterer)as the subject,to understand how to better perform XRD measurements of low Z materials at multimegabar pressures.The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254GPa at room temperature[C.Ji et al.,Nature 573,558–562(2019)].Wepresent our discoveries and experienceswith regard to several aspects of thiswork,namely,diamond anvil selection,sample configuration for ultrahigh-pressure XRDstudies,XRDdiagnostics for low Z materials,and related issues in data interpretation and pressure calibration.Webelieve that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures,eventually testing structural models of metallic hydrogen.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB29010102)National Natural Science Foundation of China (NSFC) (91957124,82161148010,32041010)+4 种基金Self-supporting Program of Guangzhou Laboratory (SRPG22-001)National Science and Technology Infrastructure of China (National Pathogen Resource Center-NPRC-32)Management Strategy of the Tertiary Prevention and Treatment of Diabetes Based on DIP system (supported by China Health Promotion Foundation)supported by the Youth Innovation Promotion Association of CAS (Y2021034)Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202208)。
文摘Severe acute respiratory syndrome coronavirus 2(SARSCo V-2)infection can result in more severe syndromes and poorer outcomes in patients with diabetes and obesity.However,the precise mechanisms responsible for the combined impact of coronavirus disease 2019(COVID-19)and diabetes have not yet been elucidated,and effective treatment options for SARS-Co V-2-infected diabetic patients remain limited.To investigate the disease pathogenesis,K18-h ACE2 transgenic(h ACE2^(Tg))mice with a leptin receptor deficiency(h ACE2-Lepr^(-/-))and high-fat diet(h ACE2-HFD)background were generated.The two mouse models were intranasally infected with a 5×10^(5) median tissue culture infectious dose(TCID_(50))of SARSCo V-2,with serum and lung tissue samples collected at 3days post-infection.The h ACE2-Lepr^(-/-)mice were then administered a combination of low-molecular-weight heparin(LMWH)(1 mg/kg or 5 mg/kg)and insulin via subcutaneous injection prior to intranasal infection with1×10^(4) TCID_(50)of SARS-Co V-2.Daily drug administration continued until the euthanasia of the mice.Analyses of viral RNA loads,histopathological changes in lung tissue,and inflammation factors were conducted.Results demonstrated similar SARS-Co V-2 susceptibility in h ACE2^(Tg)mice under both lean(chow diet)and obese(HFD)conditions.However,compared to the h ACE2-Lepr^(+/+)mice,h ACE2-Lepr^(-/-)mice exhibited more severe lung injury,enhanced expression of inflammatory cytokines and hypoxia-inducible factor-1α(HIF-1α),and increased apoptosis.Moreover,combined LMWH and insulin treatment effectively reduced disease progression and severity,attenuated lung pathological changes,and mitigated inflammatory responses.In conclusion,preexisting diabetes can lead to more severe lung damage upon SARS-Co V-2 infection,and LMWH may be a valuable therapeutic approach for managing COVID-19patients with diabetes.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (NRF-2022R1A2B5B03001627)facilities operated by Northwestern University:EPIC and SPID facilities of Northwestern University’s NUANCE Center,which have received support from the SHyNE Resource (NSF ECCS-2025633)+4 种基金the IIN,and Northwestern’s MRSEC program (NSF DMR-1720139)MatCI,supported by the MRSEC program (NSF DMR-1720139) at the Materials Research Centerthe Northwestern University George M.O’Brien Kidney Research Core Center (NU GoKidney),an NIH/NIDDK funded program (P30DK114857)supported in part by NIH UH3 DE028872supported in part by the National Science Foundation through a Graduate Research Fellowship (DGE-1842165)
文摘Ameloblasts are specialized cells derived from the dental epithelium that produce enamel,a hierarchically structured tissue comprised of highly elongated hydroxylapatite(OHAp)crystallites.The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet,partly due to limitations with in vitro experimental models.Herein,we demonstrate the ability to generate mineralizing dental epithelial organoids(DEOs)from adult dental epithelial stem cells(aDESCs)isolated from mouse incisor tissues.DEOs expressed ameloblast markers,could be maintained for more than five months(11 passages)in vitro in media containing modulators of Wnt,Egf,Bmp,Fgf and Notch signaling pathways,and were amenable to cryostorage.When transplanted underneath murine kidney capsules,organoids produced OHAp crystallites similar in composition,size,and shape to mineralized dental tissues,including some enamel-like elongated crystals.DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium,which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.
基金the financial support from the National Natural Science Foundation of China(11875008,12075034)Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant SKL2019KF04)Fundamental Research Funds for the Central Universities(2019XD-A09-3).
文摘Q-switched lasers have occupied important roles in industrial applications such as laser marking,engraving,welding,and cutting due to their advantages in high pulse energy.Here,SnS_(2)-based Q-switched lasers are implemented.Consid-ering that SnS_(2) inherits the thickness sensitive optical characteristics of TMD,three kinds of SnS2 with different thick-ness are characterized in terms of nonlinearity and used to realize the Q-switched pulses under consistent implementa-tion conditions for comparison tests.According to the results,the influence of thickness variation on the nonlinear per-formance of saturable absorber,such as modulation depth and absorption intensity,and the influence on the correspond-ing laser are analyzed.In addition,compared with other traditional saturable absorbers,the advantage of SnS_(2) in realiz-ing ultrashort pulses is also noticed.Our work explores the thickness-dependent nonlinear optical properties of SnS_(2),and the rules found is of great reference value for the establishment of target lasers.
基金National Natural Science Foundation of China(81660701)Natural Science Foundation of Guangxi(2016GXNSFAA380148)+1 种基金Scientific Research Innovation Program of Guangxi University of Chinese Medicine(YJSZ201712)Program of Key Laboratory for Purification and Quality Analysis of TCM Extraction in Guangxi Universities(Gui Jiao Ke Yan[2014]No.6).
文摘[Objectives]To optimize the extraction process of polysaccharide in Embelia parviflora Wall.by response surface methodology,and to study the antioxidant activity in vitro of polysaccharide in E.parviflora,so as to provide a basis for the further development and utilization of E.parviflora.[Methods]The solid-to-liquid ratio,extraction temperature,extraction time and extraction times were used as single factors to investigate the effects.On this basis,the response surface methodology(RSM)was used to optimize the extraction process of polysaccharide in E.parviflora.DPPH and ABTS free radicals were used to investigate the antioxidant capacity of polysaccharide in E.parviflora.[Results]The optimal solid-to-liquid ratio for extraction of polysaccharide from E.parviflora was 32∶1(mL/g),extraction temperature was 77℃,and extraction time was 36 min.The IC50 values of DPPH and ABTS were 0.04 and 0.03 mg/mL,respectively.[Conclusions]The optimized extraction process of polysaccharide in E.parviflora is stable,the extraction rate is high,and has strong antioxidant activity.It is expected to provide a reference for the industrial extraction of polysaccharide from E.parviflora.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.:82030099,30700397 Detail)the National Key R&D Program of China(Grant No.:2022YFD2101500)+5 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.:22DZ2303000)the Shanghai Municipal Science and Technology Commission“Science and Technology Innovation Action Plan”Technical Standard Project,China(Grant No.:21DZ2201700)the Shanghai Municipal Science and Technology Commission“Science and Technology Innovation Action Plan”Natural Science Foundation Project,China(Grant No.:23ZR1435800)the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Grant No.:XDB32060000)the Basic Frontier Scientific Research Program of Chinese Academy of Sciences(Grant No.:ZDBS-LY-SM019)the Yangfan Project of Shanghai Science and Technology Commission,China(Grant No.:22YF1454100),and the Innovative Research Team of High-level Local Universities in Shanghai,China.
文摘Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development.However,the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology.In this study,a comprehensive solution of ultrasensitive proteome technology(CS-UPT)was developed for single-cell or low-input mouse oocyte/embryo samples.The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands.Using the deep coverage route,we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition,including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample.Moreover,significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
基金supported by the National Natural Science Foundation of China (11771216 and 11901306)the Key Research and Development Program of Jiangsu Province (Social Development)(BE2019725)the Natural Science Foundation of Jiangsu Province (SBK2017043142)
文摘This study addresses long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law,the convolution kernel of which entails an extremely weak dissipation in the thermal law.By using the semigroup theory,we first establish the existence of global weak and strong solutions as well as their continuous dependence on the initial data in appropriate function spaces,under suitable assumptions on the weight of time delay term,the external force term and the nonlinear term.We then prove that the system is quasi-stable and has a gradient on bounded variant sets,and obtain the existence of a global attractor whose fractal dimension is finite.A result on the exponential attractor of the system is also proved.
基金This study was supported by the Natural Science Foundation of Shandong Province(ZR2020QC144,ZR2022MC017)the National Natural Science Foundation of China(32002002)the Key Research and Develop ment Programs of Shandong Provence(2021LZGC024).
文摘Anthocyanins are valuable compounds in red-fleshed apples.The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway.However,other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized.In this study,we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis.The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins.In binding experiments,we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT.Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter.Additionally,the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA.Therefore,we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.