The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functiona...The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functional theory(DFT)calculations,Ce is predicted to enable the construction of coordinatively unsaturated metal centers(CUCs)in Prussian blue analogue(PBA),which can strongly adsorb H_(2)O_(2)and donate sufficient electrons for directly splitting the O-O bond to produceOH.Using a substitution-co-assembly strategy,binary Ce-Fe PBA is then prepared,which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1-2 orders of magnitude.Meanwhile,the photogenerated electrons reduce Fe(Ⅲ)and Ce(Ⅳ)to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04%in 5 runs.Overall,by introducing rare earth metals into transition metal-organic frameworks,this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations,enabling ultrafast and stable photo-Fenton catalysis.展开更多
Electrochemiluminescence (ECL) has established itself as an excellent transduction technique in biosensing and light-emitting device, while conventional ECL mechanism depending on spontaneous emission of luminophores ...Electrochemiluminescence (ECL) has established itself as an excellent transduction technique in biosensing and light-emitting device, while conventional ECL mechanism depending on spontaneous emission of luminophores lacks reversibility and tunable emission characters, limiting the universality of ECL technique in the fields of fundamental research and clinical applications. Here, we report the first observation of stimulated emission route in ECL and thus establish a reversible tuning ECL microscopy for single-cell imaging. This microscopy uses a focused red-shifted beam to transfer spontaneous ECL into stimulated ECL, which enables selective and reversible tuning of ECL emission from homogeneous solution, single particles, and single cells. After excluding other possible competitive routes, the stimulated ECL emission route is confirmed by a dual-objective system in which the suppressed spontaneous ECL is accompanied by the enhanced stimulated ECL. By incorporating a commercial donut-shaped beam, the sharpness of single-cell matrix adhesion is improved 2 to 3 times compared with the counterpart in confocal ECL mode. The successful establishment of this stimulated emission ECL will greatly advance the development of light-emitting device and super-resolution ECL microscopy.展开更多
Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high...Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.展开更多
After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for car...After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for carbon neutrality.In recent years,negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO_(2)in the atmosphere.This review summarizes the state-of-the-art negative carbon emission technologies,from the artificial enhancement of natural carbon sink technology to the physical,chemical,or biological methods for carbon capture,as well as CO_(2)utilization and conversion.Finally,we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.展开更多
The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,bioh...The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.展开更多
基金supported by the National Natural Science Foundation of China(No.22072064,51522805,51908273,and 22176086)the State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)Start-Up Funds for Jiangsu Distinguished Professor.
文摘The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functional theory(DFT)calculations,Ce is predicted to enable the construction of coordinatively unsaturated metal centers(CUCs)in Prussian blue analogue(PBA),which can strongly adsorb H_(2)O_(2)and donate sufficient electrons for directly splitting the O-O bond to produceOH.Using a substitution-co-assembly strategy,binary Ce-Fe PBA is then prepared,which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1-2 orders of magnitude.Meanwhile,the photogenerated electrons reduce Fe(Ⅲ)and Ce(Ⅳ)to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04%in 5 runs.Overall,by introducing rare earth metals into transition metal-organic frameworks,this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations,enabling ultrafast and stable photo-Fenton catalysis.
基金supported by the National Natural Science Foundation of China (22106072 and 42177356)the Fundamental Research Funds for the Central Universities (2022300301)+4 种基金the Natural Science Research Major Project of Jiangsu Higher Education Institutions of China (22KJA610003)the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF21032)the Open Fund of Key Laboratory of Green Chemical Technology of Fujian Province University (WYKFGCT2022-3)China Postdoctoral Science Foundation (2022M721555)Jiangsu Funding Program for Excellent Postdoctoral Talent (2023ZB081)。
基金the National Natural Science Foundation of China(grant numbers 22374125,21834004,22174061,22076161,22176086,and 22025403)the Natural Science Foundation of Jiangsu Province(grant number BK20210189)+4 种基金the State Key Laboratory of Pollution Control and Resource Reuse(grant number PCRR-ZZ-202106)the Foundation of State Key Laboratory of Analytical Chemistry for Life Science(grant number SKLACLS2201)Yangzhou University Interdisciplinary Research Foundation for Chemistry Discipline of Targeted Support(grant number yzuxk202009)Fund for Jiangsu Distinguished Professor and Yangzhou University Start-up Fund,Lvyangjinfeng Talent Program of Yangzhou,Young academic leaders of Jiangsu Province(2018)Talent Support Program of Yangzhou University,and The Open Project Program of Jiangsu Key Laboratory of Zoonosis(no.R2013).
文摘Electrochemiluminescence (ECL) has established itself as an excellent transduction technique in biosensing and light-emitting device, while conventional ECL mechanism depending on spontaneous emission of luminophores lacks reversibility and tunable emission characters, limiting the universality of ECL technique in the fields of fundamental research and clinical applications. Here, we report the first observation of stimulated emission route in ECL and thus establish a reversible tuning ECL microscopy for single-cell imaging. This microscopy uses a focused red-shifted beam to transfer spontaneous ECL into stimulated ECL, which enables selective and reversible tuning of ECL emission from homogeneous solution, single particles, and single cells. After excluding other possible competitive routes, the stimulated ECL emission route is confirmed by a dual-objective system in which the suppressed spontaneous ECL is accompanied by the enhanced stimulated ECL. By incorporating a commercial donut-shaped beam, the sharpness of single-cell matrix adhesion is improved 2 to 3 times compared with the counterpart in confocal ECL mode. The successful establishment of this stimulated emission ECL will greatly advance the development of light-emitting device and super-resolution ECL microscopy.
基金support from the China Postdoctoral Science Foundation(2022M711553).Y.W.would like to acknowledge the support from the National Natural Science Foundation of China(22171132)the Innovation Fund from Nanjing University(020514913419)+5 种基金the Program for Innovative Talents and Entrepreneurs in Jiangsu(020513006012 and 020513006014),and the National Key R&D Program of China(2002YFB3607000).W.Z.would like to acknowledge the support from the National Natural Science Foundation of China(22176086)Natural Science Foundation of Jiangsu Province(BK20210189)State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(021114380183,021114380189 and 021114380199)the Research Funds from the Nanjing Science and Technology Innovation Project for Chinese Scholars Studying Abroad(13006003)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to thank the support from the Washington State University startup fund.
文摘Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.
基金support from National Natural Science Foundation of China(22176086)Natural Science Foundation of Jiangsu Province(BK20210189)+2 种基金State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(021114380183,021114380189),China Association for Science and Technology(20220615ZZ08010008)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.H.L.and H.R.would like to acknowledge the support from China Association for Sci-ence and Technology(20220615ZZ08010008).
文摘After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for carbon neutrality.In recent years,negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO_(2)in the atmosphere.This review summarizes the state-of-the-art negative carbon emission technologies,from the artificial enhancement of natural carbon sink technology to the physical,chemical,or biological methods for carbon capture,as well as CO_(2)utilization and conversion.Finally,we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.
基金W.Z.would like to acknowledge the support from National Natural Science Foundation of China(grant number:22176086)Natural Science Foundation of Jiangsu Province(grant number:BK20210189)+2 种基金State Key laboratory of Pollution Control and Resource Reuse(grant number:PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(grant number:021114380183 and 021114380189)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to acknowledge the start-up fund from Washington State University.
文摘The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.