Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and int...Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
A new polymeric adsorbent with highly hypercrosslinked structure was developed for the removal of VOCs from polluted air. The purpose of this work is to obtain the intraparticle mass transfer coefficient of the adsorb...A new polymeric adsorbent with highly hypercrosslinked structure was developed for the removal of VOCs from polluted air. The purpose of this work is to obtain the intraparticle mass transfer coefficient of the adsorbent particles. Adsorption experiments for obtaining breakthrough curves were carried out with a fixed bed system. A dynamic mathematical model for the fixed bed adsorption system was developed.By model fitting, the overall mass transfer coefficient was determined when the deviation error was minimum. Then, the intraparticle mass transfer coefficient of the adsorbent was determined when the external mass transfer resistance was eliminated at higher velocities. Furthermore, a linear relationship of the intraparticle mass transfer coefficient and equilibrium coefficient at lower inlet gas concentrations range was correlated. Moreover, an equation for predicting external mass transfer coefficient at low Reynolds number range at room temperature was obtained.展开更多
The desorption process of volatile organic compounds(VOC)from a polymer adsorbent in counter-current multistage fluidized bed was studied.And a mathematical model considering the mass transfer dynamics was developed,w...The desorption process of volatile organic compounds(VOC)from a polymer adsorbent in counter-current multistage fluidized bed was studied.And a mathematical model considering the mass transfer dynamics was developed,which was validated from experiment data.The gaseous ethyl acetate mass transfer was discussed,and the limiting step is the intraparticle mass transfer of the desorption process.The value of intraparticle mass transfer coefficient is between 1.85×10-6 and 1.38×10-5 m·s-1 under temperature of 100–160°C.Experiments under different operating conditions were carried out.The effects of operating conditions such as gas–solid flow ratio,gas inlet temperature and total stage number of multistage fluidized bed on outlet VOCs concentration and desorption efficiency were discussed.The maximum outlet VOCs concentration and corresponding desorption efficiency of the multistage fluidized bed desorber was calculated under different gas inlet temperatures and total stage numbers.展开更多
In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of c...In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.展开更多
本文研究了一种新型低密度(~6.24 g cm^(-3))双相AlTiVCoNi高熵合金,其组织结构由有序L21高熵金属间化合物、无序体心立方结构和纳米L21相多层次结构构成.该合金在1200℃+24 h热处理下未发生相结构转变,在此条件下具有优异的高温相结构...本文研究了一种新型低密度(~6.24 g cm^(-3))双相AlTiVCoNi高熵合金,其组织结构由有序L21高熵金属间化合物、无序体心立方结构和纳米L21相多层次结构构成.该合金在1200℃+24 h热处理下未发生相结构转变,在此条件下具有优异的高温相结构稳定性,其铸态和热处理态的压缩屈服强度相当,达到~1.6 GPa.另外,该合金在室温和600℃条件下表现出了优异的强塑性匹配和优异的比屈服强度,分别达到了约261和210 MPa g^(-1)cm^(3).该合金的超高强度主要源于有序L21相与体心立方相的半共格界面导致的一种强相结构稳定性和多层次结构的复合强化机制.该合金在800和1000℃压缩过程中出现了动态再结晶软化,使得其高温强度有所降低.这种“具有半共格界面L21+体心立方+纳米L21颗粒”的多层次结构设计为开发新型低密度耐高温高熵合金提供了一种新设计思路.展开更多
The evolution of particle size distribution (PSD) of fine polydisperse particles at high number concen- trations (7105 cm-3) was simulated through a combined model employing direct quadrature method of moments (D...The evolution of particle size distribution (PSD) of fine polydisperse particles at high number concen- trations (7105 cm-3) was simulated through a combined model employing direct quadrature method of moments (DQMOM) with heat and mass transfer equations. The PSD was assumed to retain log-normal distribution during the heterogeneous condensation process. The model was first verified by exact solu- tion and experimental data prior to investigating the influence of initial conditions on final PSD under an octadecane-nitrogen atmosphere. Low particle number concentrations and high vapor concentrations were beneficial to shift the PSD to larger particles having a narrower distribution. Additionally, vapor depletion has more influence on the final PSD than the heat release parameter for a number concentra- tion of 10^6 cm^-3. This study may assist the design process of a gas-solid separating cyclone, to eliminate dust from high-temperature volatiles by pyrolysis of solid fuels.展开更多
When a transformable B2 precipitate is embedded in an amorphous matrix,it is often experimentally observed that the crystalline-amorphous interface not only serves as an initiation site for the martensitic transformat...When a transformable B2 precipitate is embedded in an amorphous matrix,it is often experimentally observed that the crystalline-amorphous interface not only serves as an initiation site for the martensitic transformation due to local stress concentrations,but also as an inhibitor to stabilize the transformation,the latter being attributed to the“confinement effect”exerted by the amorphous matrix,according to the Eshelby solution.These two seemingly incongruous factors are examined in this study using molecular dynamics simulations from an atomic interaction perspective.An innate strain gradient in the vicinity of the crystalline-amorphous interface is identified.The actual interface,the compressive/dilatative transition,and the interfacial maximum strain are investigated to differentiate from the conventional“interface”located within a distance of a few nanometers.Our innate interfacial elastic strain field model is applicable for the design of materials with a higher degree of martensitic transformation and controllable stress concentration,even in cryogenic environments.展开更多
基金financial support from the National Key Research and Development Program of China(2018YFB0605003).
文摘Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Supported by the National Key R&D Program of China(2018YFC1901300),“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21040400)the National Natural Science Foundation of China(21808229).
文摘A new polymeric adsorbent with highly hypercrosslinked structure was developed for the removal of VOCs from polluted air. The purpose of this work is to obtain the intraparticle mass transfer coefficient of the adsorbent particles. Adsorption experiments for obtaining breakthrough curves were carried out with a fixed bed system. A dynamic mathematical model for the fixed bed adsorption system was developed.By model fitting, the overall mass transfer coefficient was determined when the deviation error was minimum. Then, the intraparticle mass transfer coefficient of the adsorbent was determined when the external mass transfer resistance was eliminated at higher velocities. Furthermore, a linear relationship of the intraparticle mass transfer coefficient and equilibrium coefficient at lower inlet gas concentrations range was correlated. Moreover, an equation for predicting external mass transfer coefficient at low Reynolds number range at room temperature was obtained.
基金supported by the National Key R&D Program of China(2018YFC1901300)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21040400)the National Natural Science Foundation of China(21978305)。
文摘The desorption process of volatile organic compounds(VOC)from a polymer adsorbent in counter-current multistage fluidized bed was studied.And a mathematical model considering the mass transfer dynamics was developed,which was validated from experiment data.The gaseous ethyl acetate mass transfer was discussed,and the limiting step is the intraparticle mass transfer of the desorption process.The value of intraparticle mass transfer coefficient is between 1.85×10-6 and 1.38×10-5 m·s-1 under temperature of 100–160°C.Experiments under different operating conditions were carried out.The effects of operating conditions such as gas–solid flow ratio,gas inlet temperature and total stage number of multistage fluidized bed on outlet VOCs concentration and desorption efficiency were discussed.The maximum outlet VOCs concentration and corresponding desorption efficiency of the multistage fluidized bed desorber was calculated under different gas inlet temperatures and total stage numbers.
基金supported by the National Natural Science Foundation of China(51671018,11790293,51531001,51422101,51371003,and 51671021)111 Project(B07003)+3 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKLAMM-USTB(2016Z04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Program and Fundamental Research Fund for the Central Universities(FRF-TP-15-004C1)
文摘In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.
基金the supports from the Fundamental Research Funds for the Central Universities(FRF-MP-19-013)Guangdong Basic and Applied Basic Research Foundation(2019B1515120020)+6 种基金the State Key Laboratory for Advanced Metals and Materials,the University of Science and Technology Beijing(2020Z-08)the Funds for Creative Research Groups of China(51921001)the National Natural Science Foundation of China(51801128)Guangdong Basic and Applied Basic Research Foundation(2021A1515012278 and 2022A1515010288)the supports from the National Natural Science Foundation of China(51871015 and 52171151)the supports from the National Science Foundation(DMR-1611180 and 1809640)the US Army Research Office(W911NF13-1-0438 and W911NF-19-2-0049)。
文摘本文研究了一种新型低密度(~6.24 g cm^(-3))双相AlTiVCoNi高熵合金,其组织结构由有序L21高熵金属间化合物、无序体心立方结构和纳米L21相多层次结构构成.该合金在1200℃+24 h热处理下未发生相结构转变,在此条件下具有优异的高温相结构稳定性,其铸态和热处理态的压缩屈服强度相当,达到~1.6 GPa.另外,该合金在室温和600℃条件下表现出了优异的强塑性匹配和优异的比屈服强度,分别达到了约261和210 MPa g^(-1)cm^(3).该合金的超高强度主要源于有序L21相与体心立方相的半共格界面导致的一种强相结构稳定性和多层次结构的复合强化机制.该合金在800和1000℃压缩过程中出现了动态再结晶软化,使得其高温强度有所降低.这种“具有半共格界面L21+体心立方+纳米L21颗粒”的多层次结构设计为开发新型低密度耐高温高熵合金提供了一种新设计思路.
基金This work was supported by the National Basic Research Pro- gram of China (973 Program, 2014CB744300), by the National Natural Science Foundation of China (51476180), and by Meso- science Innovation Fund (COM2015A004). Discussion with Dr. Susanne Hering on his experiment and effects of initial size is acknowledged.
文摘The evolution of particle size distribution (PSD) of fine polydisperse particles at high number concen- trations (7105 cm-3) was simulated through a combined model employing direct quadrature method of moments (DQMOM) with heat and mass transfer equations. The PSD was assumed to retain log-normal distribution during the heterogeneous condensation process. The model was first verified by exact solu- tion and experimental data prior to investigating the influence of initial conditions on final PSD under an octadecane-nitrogen atmosphere. Low particle number concentrations and high vapor concentrations were beneficial to shift the PSD to larger particles having a narrower distribution. Additionally, vapor depletion has more influence on the final PSD than the heat release parameter for a number concentra- tion of 10^6 cm^-3. This study may assist the design process of a gas-solid separating cyclone, to eliminate dust from high-temperature volatiles by pyrolysis of solid fuels.
基金supported by the National Natural Science Foundation of China(No.51601019,52001184,52071089,52071217)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302010)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010233,2019A1515110472).
文摘When a transformable B2 precipitate is embedded in an amorphous matrix,it is often experimentally observed that the crystalline-amorphous interface not only serves as an initiation site for the martensitic transformation due to local stress concentrations,but also as an inhibitor to stabilize the transformation,the latter being attributed to the“confinement effect”exerted by the amorphous matrix,according to the Eshelby solution.These two seemingly incongruous factors are examined in this study using molecular dynamics simulations from an atomic interaction perspective.An innate strain gradient in the vicinity of the crystalline-amorphous interface is identified.The actual interface,the compressive/dilatative transition,and the interfacial maximum strain are investigated to differentiate from the conventional“interface”located within a distance of a few nanometers.Our innate interfacial elastic strain field model is applicable for the design of materials with a higher degree of martensitic transformation and controllable stress concentration,even in cryogenic environments.