As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin...As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.展开更多
The applications of supramolecular metal-peptide assemblies as catalyst or catalyst precursor have recent attracted increasing attentions.In this work,a fragment of the amyloid β-peptide,NH_(2)-KLVFF-COOH,was assembl...The applications of supramolecular metal-peptide assemblies as catalyst or catalyst precursor have recent attracted increasing attentions.In this work,a fragment of the amyloid β-peptide,NH_(2)-KLVFF-COOH,was assembled into nanofilms with encapsulated Pd,Pt and Au nanoparticles(NPs)via a one-step room temperature electron induction method.The effects of building block,intermolecular interaction,driving force and side-chain on the assembly were investigated.The assembly mechanism was thereby proposed.The crosslinking of peptide monomers results in mainly random and unordered structures.The obtained metal-peptide assemblies are extremely stable in water at neutral pH for long term.However,the metal NPs are able to be responsively released under basic and reductive conditions.The released NPs show a high activity to catalyze the reduction of 4-nitrophenol.The present studies on assembly mechanism and responsive release will be helpful for the design of organic skeletons and also for the future development of peptide stabilized metallic NPs with applications beyond catalysts.展开更多
基金funded by the Natural Science Foundation of Fujian Province(2023J05180)the President's Foundation of Minnan Normal University(KJ2021011).
文摘As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.
文摘The applications of supramolecular metal-peptide assemblies as catalyst or catalyst precursor have recent attracted increasing attentions.In this work,a fragment of the amyloid β-peptide,NH_(2)-KLVFF-COOH,was assembled into nanofilms with encapsulated Pd,Pt and Au nanoparticles(NPs)via a one-step room temperature electron induction method.The effects of building block,intermolecular interaction,driving force and side-chain on the assembly were investigated.The assembly mechanism was thereby proposed.The crosslinking of peptide monomers results in mainly random and unordered structures.The obtained metal-peptide assemblies are extremely stable in water at neutral pH for long term.However,the metal NPs are able to be responsively released under basic and reductive conditions.The released NPs show a high activity to catalyze the reduction of 4-nitrophenol.The present studies on assembly mechanism and responsive release will be helpful for the design of organic skeletons and also for the future development of peptide stabilized metallic NPs with applications beyond catalysts.