Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been ex...While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.展开更多
This paper proposes a novel nonlinear correlation filter for facial landmark localization. Firstly, we prove that SVM as a classifier can also be used for localization. Then, soft constrained Minimum Average Correlati...This paper proposes a novel nonlinear correlation filter for facial landmark localization. Firstly, we prove that SVM as a classifier can also be used for localization. Then, soft constrained Minimum Average Correlation Energy filter (soft constrained MACE) is proposed, which is more resistent to overfittings to training set than other variants of correlation filter. In order to improve the performance for the multi-mode of the targets, locally linear framework is introduced to our model, which results in Fourier Locally Linear Soft Constraint MACE (FL^2 SC-MACE). Furthermore, we formulate the fast implementation and show that the time consumption in test process is independent of the number of training samples. The merits of our method include accurate localization performance, desiring generalization capability to the variance of objects, fast testing speed and insensitivity to parameter settings. We conduct the cross-set eye localization experiments on challenging FRGC, FERET and BioID datasets. Our method surpasses the state-of-arts especially in pixelwise accuracy.展开更多
Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their...Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their unique properties and potential applications in the treatment of wastewater.In this study,a novel superhydrophobic/superoleophilic composite melamine sponge modified with dual silanized SiO_(2) microspheres was fabricated simply by a two-step sol-gel method using vinyltriethoxysilane and hexadecyltrimethoxysilane as functional agent,which exhibited a water contact angle of 153.2°and a water sliding contact angle of 4.8°.Furthermore,the composite sponge showed the excellent oil adsorption performance and the compressive elasticity reaching up to 130 g·g^(-1) of dichloromethane and 33.1 kPa of compressive stress.It was worth noting that the composite sponge presented the excellent separation efficiency(up to 99.5%)in the processes of continuous oil/water separation.The robust superhydrophobic composite melamine sponge provided the possibility with the practical application for oil-water separation.展开更多
In the last decades, the extensive use of chemical and biological materials has not only seen to an increased transport of environmental pollutants but also, it has interfered and compromised the pristine state of dif...In the last decades, the extensive use of chemical and biological materials has not only seen to an increased transport of environmental pollutants but also, it has interfered and compromised the pristine state of different environmental matrices with emphasis on waterbodies. This has stimulated studies to develop and adopt novel techniques which consider the removal of pollutants with premium on economic feasibility, simple instrumentation, and high performance. In the treatment of water, the removal of trace concentration organic compounds and other numerous polluted water effluents is difficult due to limited affinity of trace compound ions to ion exchange resins. Because of the selective nature;recognition properties;adsorption ability;high stability;and easier preparation of molecular imprints, they are considered attractive and suitable artificial receptors to be applied in analytical separations, drug delivery, and as chemical sensors. In this review, we touch on the fundamentals of molecularly imprinted technologies and underscore some recent advances made in the development of imprinted polymers that are compatible with water and how they can be used in the clean-up of pollutants. The paper finally presents a comprehensive report on some challenges and outlook in the use of MIPs as water treatment sorbent.展开更多
In order to improve the performance of the rotary engine,this paper has designed a new type of dual-pit rotary engine combustion chamber structure,and compares the combustion and emission characteristics with the rota...In order to improve the performance of the rotary engine,this paper has designed a new type of dual-pit rotary engine combustion chamber structure,and compares the combustion and emission characteristics with the rotary engine with a traditional combustion chamber.The existence of the dual-pit combustion chamber strengthens the overall vortex intensity in the cylinder,effectively promotes the mixing process of fuel and air in the cylinder,the maximum combustion pressure in the cylinder increased by 8.6%,significantly increases the diffusion combustion speed,and significantly improves the dynamic performance of the rotary engine.On this basis,the effects of fuel injection timing parameters on fuel distribution,combustion and emission characteristics were studied.Fuel distribution is more even and dispersed during injection in the later stage of compression.When the fuel injection timing was 105°BTDC in the middle of the compression phase,the matching effect of fuel distribution law and ignition scheme was the best.When the injection timing was 75°BTDC and 85°BTDC in the late compression stage,the mass fraction of NOx remained at a low level.The correlation between soot generation and the change of fuel injection timing was weak.When the injection time was 85°BTDC,the soot generation remained at a relatively high level.展开更多
Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by ATP7B (encoding a copper-transporting P-type ATPase) variants that shows various characteristics according to race a...Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by ATP7B (encoding a copper-transporting P-type ATPase) variants that shows various characteristics according to race and geographical region. This study was aimed to provide a comprehensive analysis of ATP7B variants in China and to investigate a plausible role of common variants in WD manifestations. Methods: A total of 1366 patients (1302 index patients and 64 siblings) clinically diagnosed with WD (Leipzig score ≥ 4) were recruited. They underwent ATP7B gene sequencing and information of age and symptoms at onset was collected. The genotype-phenotype correlation was assessed in the index patients who were examined with two pathogenic variants and onset with hepatic (n = 276) or neurologic (n = 665) symptoms. Results: We identified 294 potentially pathogenic ATP7B variants (112 truncating, 174 missense, 8 in-frame) in the 1302 index patients, including 116 novel variants. The most frequent variant was c.2333G>T (R778L, allele fre-quency: 28.96%), followed by c.2975C>T (P992L, 13.82%), c.2621C>T (A874V, 5.99%), c.2755C>G (R919G, 2.46%), and c.3646G>A (V1216M, 1.92%). In 1167 patients, both pathogentic variants were identified, of which 532 differ-ent variant combinations were found. By binary logistic regression analysis, the factor associated with neurological presentation was high age-at-onset, but not sex, protein-truncating variant (PTV), or the common missense variants (R778L, P992L, and A874V). In the neurological group, low age-at-onset was a factor associated with dystonia, gait abnormality, and salivation;high age-at-onset was a factor associated with tremor;and the sex, low age-at-onset and A874V were independent factors associated with dysarthria. In addition, PTV, R778L, and P992L were predominant in early-onset patients, whereas A874V was predominant in late-onset patients, and patients with R778L/A874V geno-type displayed a higher age-at-onset than patients with R778L/R778L or R778L/P992L genotype. Conclusions: Our work expanded the ATP7B variant spectrum and highlighted the differences among patients with WD in age-at-onset and ATP7B variants, which may provide some valuable insights into the diagnosis, counseling, and treatment of patients with WD.展开更多
A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contribu...A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contributing mechanism of different active sites including dispersed CuO and Cu–Ce solid solutions.The ignition temperature(Ti)of CO over these catalysts at a flow rate of 2000 mL/min followed the order:74℃(Cu_(0.5)Ce_(0.5)O_(y))<75℃(Cu_(0.25)Ce_(0.75)O_(y))<84℃(Cu_(0.75)Ce_(0.25)O_(y))<105℃(CuO)<500℃(CeO_(2)).Furthermore,the lean combustion limits(equivalence ratioϕ)over these catalysts under the flow rates of 750–3000 mL/min(through fixed,bubbling,and fluidized bed)were also measured,which are Cu_(0.5)Ce_(0.5)O_(y)<Cu_(0.25)Ce_(0.75)Oy<Cu_(0.75)Ce_(0.25)O_(y)<CuO<CeO_(2).The fluidized bed was simulated using the Eulerian two-fluid model(TFM)coupled with a diffusion/kinetic-limited reaction model to evaluate the influence of operation conditions on the self-sustained combustion of CO.The predicted maximum temperature agreed with the experimental measurements,demonstrating the validity of the kinetic model and simulation parameters.The results of catalytic combustion with increasing CO concentrations suggest that the catalytic combustion reaction could co-exist with the flamed combustion.When a high concentration of CO is used,a blue-purple flame caused by CO combustion appears in the upper part of the fluidized bed,indicating that the range of CO-containing exhaust gas purification could be expanded to a larger range using the fluidized-bed catalytic combustion technique.展开更多
Great efforts have been made over the last few decades in understanding of the mechanisms and phenomenology of soot formation and burnout in combustion systems.In this paper,theoretical advances in modelling soot form...Great efforts have been made over the last few decades in understanding of the mechanisms and phenomenology of soot formation and burnout in combustion systems.In this paper,theoretical advances in modelling soot formation and oxidation under engine circumstance are surveyed based on the published works,particularly focus on the practical soot modelling coupled with engine computational fluid dynamics(CFD)numerical studies.The types of soot models can be divided up into three main groups:empirical,semi-empirical and detailed soot model.With the development of computing technology and increasingly comprehensive soot fundamental knowledge,the semi-empirical phenomenological soot model with major generic processes of soot formation was proposed,which is one of the most extensively investigated soot models in recent years.It is highlighted with solving mathematical equations to get soot particle number density,soot volume and mass fraction.When coupled with fuel chemistry,the detailed soot model seeks to predict soot characteristics based on molecule structure,bringing further insight of the soot evolution and transient behavior of soot-relevant species.Therefore,the sooting tendency from engine combustion fueled with alternative and oxygenated fuels are able to be further explored,which is conductive to propose new engine technologies for soot mitigation and future fuel strategy.展开更多
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
文摘While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.
文摘This paper proposes a novel nonlinear correlation filter for facial landmark localization. Firstly, we prove that SVM as a classifier can also be used for localization. Then, soft constrained Minimum Average Correlation Energy filter (soft constrained MACE) is proposed, which is more resistent to overfittings to training set than other variants of correlation filter. In order to improve the performance for the multi-mode of the targets, locally linear framework is introduced to our model, which results in Fourier Locally Linear Soft Constraint MACE (FL^2 SC-MACE). Furthermore, we formulate the fast implementation and show that the time consumption in test process is independent of the number of training samples. The merits of our method include accurate localization performance, desiring generalization capability to the variance of objects, fast testing speed and insensitivity to parameter settings. We conduct the cross-set eye localization experiments on challenging FRGC, FERET and BioID datasets. Our method surpasses the state-of-arts especially in pixelwise accuracy.
基金This work was supported by the National Natural Science Foundation of China(No.21676127)Natural Science Foundation of Jiangsu Province(BK20170532)+4 种基金China Postdoctoral Science Foundation(2017M620194)Jiangsu Planned Projects for Postdoctoral Research Funds(1701023A)Natural Science Foundation Jiangsu Higher Education Institutions(17KJB430011)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_1592)Zhenjiang Natural Science Foundation of China(Grant Nos.SH2017046,SH2017055).
文摘Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge.Superhydrophobic materials have attracted tremendous attention due to their unique properties and potential applications in the treatment of wastewater.In this study,a novel superhydrophobic/superoleophilic composite melamine sponge modified with dual silanized SiO_(2) microspheres was fabricated simply by a two-step sol-gel method using vinyltriethoxysilane and hexadecyltrimethoxysilane as functional agent,which exhibited a water contact angle of 153.2°and a water sliding contact angle of 4.8°.Furthermore,the composite sponge showed the excellent oil adsorption performance and the compressive elasticity reaching up to 130 g·g^(-1) of dichloromethane and 33.1 kPa of compressive stress.It was worth noting that the composite sponge presented the excellent separation efficiency(up to 99.5%)in the processes of continuous oil/water separation.The robust superhydrophobic composite melamine sponge provided the possibility with the practical application for oil-water separation.
文摘In the last decades, the extensive use of chemical and biological materials has not only seen to an increased transport of environmental pollutants but also, it has interfered and compromised the pristine state of different environmental matrices with emphasis on waterbodies. This has stimulated studies to develop and adopt novel techniques which consider the removal of pollutants with premium on economic feasibility, simple instrumentation, and high performance. In the treatment of water, the removal of trace concentration organic compounds and other numerous polluted water effluents is difficult due to limited affinity of trace compound ions to ion exchange resins. Because of the selective nature;recognition properties;adsorption ability;high stability;and easier preparation of molecular imprints, they are considered attractive and suitable artificial receptors to be applied in analytical separations, drug delivery, and as chemical sensors. In this review, we touch on the fundamentals of molecularly imprinted technologies and underscore some recent advances made in the development of imprinted polymers that are compatible with water and how they can be used in the clean-up of pollutants. The paper finally presents a comprehensive report on some challenges and outlook in the use of MIPs as water treatment sorbent.
基金National Natural Science Foundation of China No.51976083 and the Qing Lan Project.
文摘In order to improve the performance of the rotary engine,this paper has designed a new type of dual-pit rotary engine combustion chamber structure,and compares the combustion and emission characteristics with the rotary engine with a traditional combustion chamber.The existence of the dual-pit combustion chamber strengthens the overall vortex intensity in the cylinder,effectively promotes the mixing process of fuel and air in the cylinder,the maximum combustion pressure in the cylinder increased by 8.6%,significantly increases the diffusion combustion speed,and significantly improves the dynamic performance of the rotary engine.On this basis,the effects of fuel injection timing parameters on fuel distribution,combustion and emission characteristics were studied.Fuel distribution is more even and dispersed during injection in the later stage of compression.When the fuel injection timing was 105°BTDC in the middle of the compression phase,the matching effect of fuel distribution law and ignition scheme was the best.When the injection timing was 75°BTDC and 85°BTDC in the late compression stage,the mass fraction of NOx remained at a low level.The correlation between soot generation and the change of fuel injection timing was weak.When the injection time was 85°BTDC,the soot generation remained at a relatively high level.
基金the National Natural Science Foundation of China(81903895,81973825,and 82104783)the Natural Science Foundation of Anhui Province(1908085QC90)the Anhui University Collaborative Innovation Project(GXXT-2020-025).
文摘Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by ATP7B (encoding a copper-transporting P-type ATPase) variants that shows various characteristics according to race and geographical region. This study was aimed to provide a comprehensive analysis of ATP7B variants in China and to investigate a plausible role of common variants in WD manifestations. Methods: A total of 1366 patients (1302 index patients and 64 siblings) clinically diagnosed with WD (Leipzig score ≥ 4) were recruited. They underwent ATP7B gene sequencing and information of age and symptoms at onset was collected. The genotype-phenotype correlation was assessed in the index patients who were examined with two pathogenic variants and onset with hepatic (n = 276) or neurologic (n = 665) symptoms. Results: We identified 294 potentially pathogenic ATP7B variants (112 truncating, 174 missense, 8 in-frame) in the 1302 index patients, including 116 novel variants. The most frequent variant was c.2333G>T (R778L, allele fre-quency: 28.96%), followed by c.2975C>T (P992L, 13.82%), c.2621C>T (A874V, 5.99%), c.2755C>G (R919G, 2.46%), and c.3646G>A (V1216M, 1.92%). In 1167 patients, both pathogentic variants were identified, of which 532 differ-ent variant combinations were found. By binary logistic regression analysis, the factor associated with neurological presentation was high age-at-onset, but not sex, protein-truncating variant (PTV), or the common missense variants (R778L, P992L, and A874V). In the neurological group, low age-at-onset was a factor associated with dystonia, gait abnormality, and salivation;high age-at-onset was a factor associated with tremor;and the sex, low age-at-onset and A874V were independent factors associated with dysarthria. In addition, PTV, R778L, and P992L were predominant in early-onset patients, whereas A874V was predominant in late-onset patients, and patients with R778L/A874V geno-type displayed a higher age-at-onset than patients with R778L/R778L or R778L/P992L genotype. Conclusions: Our work expanded the ATP7B variant spectrum and highlighted the differences among patients with WD in age-at-onset and ATP7B variants, which may provide some valuable insights into the diagnosis, counseling, and treatment of patients with WD.
基金support from the National Natural Science Foundation of China(No.52176141).
文摘A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide(CO).The Cu_(1−x)Ce_(x)O_(y) catalyst,as well as the pure CuO and CeO_(2),are used to investigate the contributing mechanism of different active sites including dispersed CuO and Cu–Ce solid solutions.The ignition temperature(Ti)of CO over these catalysts at a flow rate of 2000 mL/min followed the order:74℃(Cu_(0.5)Ce_(0.5)O_(y))<75℃(Cu_(0.25)Ce_(0.75)O_(y))<84℃(Cu_(0.75)Ce_(0.25)O_(y))<105℃(CuO)<500℃(CeO_(2)).Furthermore,the lean combustion limits(equivalence ratioϕ)over these catalysts under the flow rates of 750–3000 mL/min(through fixed,bubbling,and fluidized bed)were also measured,which are Cu_(0.5)Ce_(0.5)O_(y)<Cu_(0.25)Ce_(0.75)Oy<Cu_(0.75)Ce_(0.25)O_(y)<CuO<CeO_(2).The fluidized bed was simulated using the Eulerian two-fluid model(TFM)coupled with a diffusion/kinetic-limited reaction model to evaluate the influence of operation conditions on the self-sustained combustion of CO.The predicted maximum temperature agreed with the experimental measurements,demonstrating the validity of the kinetic model and simulation parameters.The results of catalytic combustion with increasing CO concentrations suggest that the catalytic combustion reaction could co-exist with the flamed combustion.When a high concentration of CO is used,a blue-purple flame caused by CO combustion appears in the upper part of the fluidized bed,indicating that the range of CO-containing exhaust gas purification could be expanded to a larger range using the fluidized-bed catalytic combustion technique.
基金Support from the National Research Foundation(NRF)of Singapore under research grant WBS R-265-000-611-281 is gratefully acknowledged。
文摘Great efforts have been made over the last few decades in understanding of the mechanisms and phenomenology of soot formation and burnout in combustion systems.In this paper,theoretical advances in modelling soot formation and oxidation under engine circumstance are surveyed based on the published works,particularly focus on the practical soot modelling coupled with engine computational fluid dynamics(CFD)numerical studies.The types of soot models can be divided up into three main groups:empirical,semi-empirical and detailed soot model.With the development of computing technology and increasingly comprehensive soot fundamental knowledge,the semi-empirical phenomenological soot model with major generic processes of soot formation was proposed,which is one of the most extensively investigated soot models in recent years.It is highlighted with solving mathematical equations to get soot particle number density,soot volume and mass fraction.When coupled with fuel chemistry,the detailed soot model seeks to predict soot characteristics based on molecule structure,bringing further insight of the soot evolution and transient behavior of soot-relevant species.Therefore,the sooting tendency from engine combustion fueled with alternative and oxygenated fuels are able to be further explored,which is conductive to propose new engine technologies for soot mitigation and future fuel strategy.