期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Slow-release Nitrogen Fertilizer on Yield and Nitrogen Accumulation of Summer Maize in Shajiang Black Soil Area
1
作者 Yongfeng XING Changmin WEI +7 位作者 Guoli CHEN Weimeng XU Wanyou SONG Guizhi LI wenwei zhou Yanwei WAN Enzhong zhou Weifang LI 《Agricultural Biotechnology》 2024年第2期72-74,共3页
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap... [Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area. 展开更多
关键词 Slow-release nitrogen fertilizer Shajiang black soil Summer maize Nitrogen metabolism YIELD
下载PDF
Fuzzy Droop Control for SOC Balance and Stability Analysis of DC Microgrid with Distributed Energy Storage Systems
2
作者 Jipeng Gu Xiaodong Yang +4 位作者 Youbing Zhang Luyao Xie Licheng Wang wenwei zhou Xiaohui Ge 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1203-1216,共14页
The unbalanced state of charge(SOC)of distributed energy storage systems(DESSs)in autonomous DC microgrid causes energy storage units(ESUs)to terminate operation due to overcharge or overdischarge,which severely affec... The unbalanced state of charge(SOC)of distributed energy storage systems(DESSs)in autonomous DC microgrid causes energy storage units(ESUs)to terminate operation due to overcharge or overdischarge,which severely affects the power quality.In this paper,a fuzzy droop control for SOC balance and stability analysis of DC microgrid with DESSs is proposed to achieve SOC balance in ESUs while maintaining a stable DC bus voltage.First,the charge and discharge modes of ESUs are determined based on the power supply requirements of the DC microgrid.One-dimensional fuzzy logic is then applied to establish the relationship between SOC and the droop coefficient R,in the aforementioned two modes.In addition,when integrated with voltage-current double closed-loop control,SOC balance in different ESUs is realized.To improve the balance speed and precision,an exponential acceleration factor is added to the input variable of the fuzzy controller.Finally,based on the average model of converter,the system-level stability of microgrid is analyzed.MATLAB/Simulink simulation results verify the effectiveness and rationality of the proposed method. 展开更多
关键词 DC microgrid distributed energy storage system fuzzy droop control state of charge(SOC)balance STABILITYANALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部