期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Polarization ratio characteristics of electromagnetic scattering fromsea ice inpolar areas 被引量:3
1
作者 Li Zhao Tao Xie +5 位作者 Lei Meng william perrie Jin-Song Yang He Fang Han Chen Run-Bing Ai 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期265-276,共12页
In the global climate system, the polar regions are sensitive indicators of climate change, in which sea ice plays an important role. Satellite remote sensing is a significant tool for monitoring sea ice. The use of s... In the global climate system, the polar regions are sensitive indicators of climate change, in which sea ice plays an important role. Satellite remote sensing is a significant tool for monitoring sea ice. The use of synthetic aperture radar(SAR) images to distinguish sea ice from sea water is one of the current research hotspots in this topic. To distinguish sea ice from the open sea, the polarization ratio characteristics of sea ice and sea water are studied for L-band and C-band radars, based on an electromagnetic scattering model of sea ice derived from the integral equation method(IEM) and the radiative transfer(RT) model. Numerical experiments are carried out based on the model and the results are given as follows. For L-band, the polarization ratio for sea water depends only on the incident angle, while the polarization ratio for sea ice is related to the incident angle and the ice thickness. For C-band, the sea water polarization ratio is influenced by the incident angle and the root mean square(RMS) height of the sea surface. For C-band, for small to medium incident angles,the polarization ratio for bare sea ice is mainly determined by the incident angle and ice thickness. When the incident angle increases, the RMS height will also affect the polarization ratio for bare sea ice. If snow covers the sea ice, then the polarization ratio for sea ice decreases and is affected by the RMS height of snow surface, snow thickness, volume fraction and the radius of scatterers. The results show that the sea ice and the open sea can be distinguished by using either L-band or C-band radar according to their polarization ratio difference. However, the ability of L-band to make this differentiation is higher than that of C-band. 展开更多
关键词 sea ice electromagnetic scattering polarization ratio
下载PDF
Air-sea Interaction of Typhoon Sinlaku (2002) Simulated by the Canadian MC2 Model 被引量:14
2
作者 任雪娟 william perrie 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期521-530,共10页
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objecti... Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST) cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)° × (1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25° × 0.25° MC2 grid. 展开更多
关键词 TYPHOON air-sea interaction SST cooling MC2
下载PDF
The effect of wave-induced radiation stress on storm surge during Typhoon Saomai(2006) 被引量:10
3
作者 FENG Xingru YIN Baoshu +1 位作者 YANG Dezhou william perrie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第3期20-26,共7页
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Wa... The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model. The results show that radiation stress can cause both set-up and set-down in the storm surge. Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction; wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights. The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast. The occurrence of set-down can be also explained by the divergence of the radiation stress. The maximum wave-induced set-up occurs on the right side of the Typhoon path, whereas the maximum wave induced set-down occurs on the left side. 展开更多
关键词 radiation stress storm surge wave-current interactions Typhoon Saomai
下载PDF
Electromagnetic backscattering from one-dimensional drifting fractal sea surface Ⅰ:Wave–current coupled model 被引量:2
4
作者 谢涛 赵尚卓 +3 位作者 william perrie 方贺 于文金 何宜军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期214-222,共9页
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical r... To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. 展开更多
关键词 FRACTAL ocean surface current ocean wave NRCS
下载PDF
A new model to estimate significant wave heights with ERS-1/2 scatterometer data 被引量:1
5
作者 过杰 何宜军 +2 位作者 william perrie 申辉 储小青 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第1期112-116,共5页
A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to tha... A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise. 展开更多
关键词 SCATTEROMETER significant wave height neural networks wind waves SWELL
下载PDF
热带气旋下海浪对大气向海洋输入的动量和能量的影响 被引量:1
6
作者 李向一 刘国强 +1 位作者 何宜军 william perrie 《海洋学报》 CAS CSCD 北大核心 2021年第11期61-69,共9页
海浪不仅决定着海洋表面的粗糙度,由热带气旋引起的海浪,还通过其发展演化控制着大部分的海气之间的动量和能量传递。本文采用热带气旋观测数据IBTrACS和海浪模式WW III的模拟结果探究了热带气旋下海浪对大气向海洋输入的动量和能量的... 海浪不仅决定着海洋表面的粗糙度,由热带气旋引起的海浪,还通过其发展演化控制着大部分的海气之间的动量和能量传递。本文采用热带气旋观测数据IBTrACS和海浪模式WW III的模拟结果探究了热带气旋下海浪对大气向海洋输入的动量和能量的影响。结果发现,近30 a热带气旋的强度约每10 a增加1 m/s,但移速没有明显变化。热带气旋的强度越大,从大气输入到海浪和从海浪输入到海流中的动量之差和能量之差也越大。由于热带气旋的风场和海浪场都有较强的不对称性,海气动量差和能量差也表现出非均匀分布:动量差较大的区域在热带气旋移动方向的后方,能量差的最大值则分布在右后象限,且二者均为左前方比较小。逆波龄与动量差和能量差呈高度正相关,相关系数约为0.95,说明波越年轻吸收的动量和能量越多。气旋移速越快逆波龄越大,且热带气旋移动速度与动量差和能量差呈正相关,相关系数在0.8以上。因此,海浪影响着大气向海洋输入的动量和能量的分布和大小,在以后关于海洋边界动力学和热力学的研究中,考虑海浪的演化可能会使结果更加准确。 展开更多
关键词 热带气旋 海浪 动量 能量
下载PDF
Numerical method of studying nonlinear interactions between long waves and multiple short waves 被引量:1
7
作者 谢涛 旷海兰 +5 位作者 william perrie 邹光辉 南撑峰 何超 沈涛 陈伟 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3090-3098,共9页
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we ... Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3. 展开更多
关键词 sea surface nonliear interaction numerical method
下载PDF
Effective dielectric constant model of electromagnetic backscattering from stratified air–sea surface film–sea water medium 被引量:2
8
作者 谢涛 william perrie +3 位作者 方贺 赵立 于文金 何宜军 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期120-125,共6页
Studies of surface film medium on the sea surface are carried out in this paper for developing the technology to automatically detect and classify sea surface films, and an effective dielectric constant model of elect... Studies of surface film medium on the sea surface are carried out in this paper for developing the technology to automatically detect and classify sea surface films, and an effective dielectric constant model of electromagnetic backscattering from a stratified air–ocean interface. Numerical results of the new model show the characteristics of effective dielectric constants for the air–sea surface film–sea water medium as follows. The effective dielectric constants decrease with increasing relative dielectric constants of the sea surface films. The effective dielectric constants decrease in horizontal polarization(abbr. HH polarization) and increase in VV vertical polarization(abbr. VV polarization) with increasing radar incident angle. Effective dielectric constants vary with relative sea surface film thickness as a cosinusoidal function of sea surface film thickness. Effective dielectric constant of VV polarization is larger than that of HH polarization. Two potential applications are found with our model, i.e., the retrieval of dielectric constants from the sea surface film, and the film thickness retrieval with our model. Our model has a highly significant influence on improving the technology related to the remote sensing of sea surface films. 展开更多
关键词 dielectric retrieval constants automatically classify stratified ocean imaginary incident layered
下载PDF
Electromagnetic backscattering from one-dimensional drifting fractal sea surface Ⅱ:Electromagnetic backscattering model 被引量:1
9
作者 谢涛 william perrie +3 位作者 赵尚卓 方贺 于文金 何宜军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期214-219,共6页
Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for... Sea surface current has a significant influence on electromagnetic(EM) backscattering signals and may constitute a dominant synthetic aperture radar(SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section(NRCS) discrepancies between the model for a coupled wavecurrent fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle,as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. 展开更多
关键词 fractal ocean current electromagnetic scattering normalized radar cross section(NRCS)
下载PDF
Electromagnetic backscattering from freak waves in(1+1)-dimensional deep-water
10
作者 谢涛 沈涛 +2 位作者 william perrie 陈伟 旷海兰 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期250-259,共10页
To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1+1)-dimensional deep water. The nonlinear in... To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1+1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles. 展开更多
关键词 freak wave NONLINEARITIES electromagnetic backscattering sea surface
下载PDF
Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface
11
作者 谢涛 何超 +3 位作者 william perrie 旷海兰 邹光辉 陈伟 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期234-239,共6页
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularl... In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long. 展开更多
关键词 fractals NONLINEARITIES sea surface electromagnetic scattering
下载PDF
A two scale nonlinear fractal sea surface model in a one dimensional deep sea
12
作者 谢涛 邹光辉 +2 位作者 william perrie 旷海兰 陈伟 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期607-612,共6页
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity chan... Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed, 展开更多
关键词 fractal sea surface models nonlinear interaction numerical method
下载PDF
次重力波对宽刈幅高度计海表面高度观测的影响
13
作者 张蕾 刘国强 +1 位作者 何宜军 william perrie 《海洋学报》 CAS CSCD 北大核心 2019年第6期103-113,共11页
次重力波(Infragravity Wave,IGW)是一种频率较低(0.05~0.005 Hz),波长较长(约10 km)的表面重力波。由IGW引起的海表面高度变化会被宽刈幅干涉高度计SWOT(Surface Water and Ocean Topography,SWOT)卫星观测到,因此在使用SWOT观测的海... 次重力波(Infragravity Wave,IGW)是一种频率较低(0.05~0.005 Hz),波长较长(约10 km)的表面重力波。由IGW引起的海表面高度变化会被宽刈幅干涉高度计SWOT(Surface Water and Ocean Topography,SWOT)卫星观测到,因此在使用SWOT观测的海表面高度来反演中尺度、次中尺度大洋环流时,IGW是一种重要的误差来源。根据数值模型模拟的全球IGW时空分布特征,本文以IGW最为活跃的东北太平洋和欧洲西北陆架附近大西洋为研究海域,估算了上述海域由IGW所引起的海表面高度变化,并将计算结果与SWOT Simulator模拟的轨道噪声(±5 cm)比较,首次定量地估算了IGW在SWOT观测海表面高度时的干扰程度。研究表明,IGW所引起的厘米量级的海表面高度变化在SWOT卫星观测海表面流场时是一种重要的,不可忽略的误差来源。在大西洋欧洲西北陆架海域,冬季IGW对海表面高度的贡献可达到SWOT卫星噪声要求水平的25%;然而,对于大陆架狭窄的美国西岸太平洋而言,由岸线产生的IGW将迅速传入深海海域,在广阔的范围内产生显著的"噪声"影响,在SWOT反演海表面流场时由IGW引起的误差将达到SWOT卫星噪声要求水平的15%。 展开更多
关键词 次重力波 宽刈幅干涉卫星高度计 次中尺度大洋环流
下载PDF
Detection of meso-micro scale surface features based on microcanonical multifractal formalism
14
作者 杨媛媛 陈伟 +1 位作者 谢涛 william perrie 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期294-299,共6页
Synthetic aperture radar (SAR) is an effective tool to analyze the features of the ocean. In this paper, the microcanon- ical multifractal formalism is used to analyze SAR images to obtain meso-micro scale surface f... Synthetic aperture radar (SAR) is an effective tool to analyze the features of the ocean. In this paper, the microcanon- ical multifractal formalism is used to analyze SAR images to obtain meso-micro scale surface features. We use the Sobel operator to calculate the gradient of each point in the image, then operate continuous variable scale wavelet transform on this gradient matrix. The relationship between the wavelet coefficient and scale is built by linear regression. This relation- ship decides the singular exponents of every point in the image which contain local and global features. The manifolds in the ocean can be revealed by analyzing these exponents. The most singular manifold, which is related to the streamlines in the SAR images, can be obtained with a suitable threshold of the singular exponents. Experiments verify that application of the microcanonical multifractal formalism to SAR image analysis is effective for detecting the meso-micro scale surface information. 展开更多
关键词 multifractal microcanonical singularity analysis
下载PDF
Ocean surface wave measurements from fully polarimetric SAR imagery 被引量:6
15
作者 XIE Tao william perrie +4 位作者 HE YiJun LI HaiYan FANG He ZHAO ShangZhuo YU WenJin 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第10期1849-1861,共13页
A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform infor... A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform information from SAR images,in order to generate elevation maps of topography for land surfaces.Here,in order to retrieve ocean wave characteristics,we apply the SFS methodology,together with a method to orient the angular measurements of the azimuth slope and range slope,in the measurement of ocean surface waves.This method is applied to high resolution fine-quad polarization mode(HH,VV,VH and HV)C-band RADARSAT-2 SAR imagery,in order to retrieve ocean wave spectra and extract wave parameters.Collocated in situ buoy measurements are used to validate the reliability of this method.Results show that the method can reliably estimate wave height,dominant wave period,dominant wave length and dominant wave direction from C-band SAR images.The advantage of this method is that it does not depend on modulation transfer functions(MTFs),in order to measure ocean surface waves.This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas,especially the marginal ice zone(MIZ)in polar oceans. 展开更多
关键词 polarimetric SAR imagery ocean surface wave shape from shading
原文传递
组合表面Bragg散射模型共极化SAR海表面风速反演
16
作者 方贺 杨劲松 +3 位作者 樊高峰 李超 史达伟 william perrie 《遥感学报》 EI CSCD 北大核心 2022年第6期1274-1287,共14页
组合表面布拉格散射模型CSBS(Composite Surface Bragg Scattering)由布拉格(Bragg)散射模型和几何光学模型组成,是海洋微波散射的经典模型,可用于星载合成孔径雷达SAR(Synthetic Aperture Radar)海表面风场反演。研究指出,Bragg散射模... 组合表面布拉格散射模型CSBS(Composite Surface Bragg Scattering)由布拉格(Bragg)散射模型和几何光学模型组成,是海洋微波散射的经典模型,可用于星载合成孔径雷达SAR(Synthetic Aperture Radar)海表面风场反演。研究指出,Bragg散射模型仅适用于中等入射角条件,几何光学模型则更适用于小入射角情形。然而,如何确定中等和小入射角的阈值,即CSBS模型最优入射角的选取目前尚无定论。基于142景成像于美国东西海岸和中国东海的RADARSAT-2精细四极化SAR影像数据和海洋浮标数据,本文提出了一种最优局地入射角查找算法,分别对VV和HH极化SAR数据进行最优入射角阈值的选取。结果显示,局地入射角14°和16°分别为VV和HH极化影像CSBS模型反演风速最优入射角。基于最优入射角的选取,本文在0—15 m/s海况区间内利用CSBS模型对VV和HH极化SAR影像开展风速反演实验,并将反演风速与浮标风速进行对比。结果显示,基于VV和HH极化数据的CSBS模型反演风速与浮标风速均方根误差分别为2.15 m/s和2.32 m/s,相关系数分别为0.79和0.75,两者具有良好的一致性。本文研究结论表明基于最优入射角设置后的CSBS模型在海面风速小于15 m/s条件下具有良好的应用性,后续研究将更加关注CSBS模型在高海况以及交叉极化SAR数据情况下的应用。 展开更多
关键词 遥感 电磁散射模型 合成孔径雷达 海表面风速 地球物理函数模型
原文传递
High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR 被引量:2
17
作者 He FANG william perrie +6 位作者 Gaofeng FAN Zhengquan LI Juzhen CAI Yue HE Jingsong YANG Tao XIE Xuesong ZHU 《Frontiers of Earth Science》 SCIE CSCD 2022年第1期90-98,共9页
Gaofen-3(GF-3)is the first Chinese spaceborne multi-polarization synthetic aperture radar(SAR)instrument at C-band(5.43 GHz).In this paper,we use data collected from GF-3 to observe Super Typhoon Lekima(2019)in the Ea... Gaofen-3(GF-3)is the first Chinese spaceborne multi-polarization synthetic aperture radar(SAR)instrument at C-band(5.43 GHz).In this paper,we use data collected from GF-3 to observe Super Typhoon Lekima(2019)in the East China Sea.Using a VH-polarized wide ScanSAR(WSC)image,ocean surface wind speeds at 100m horizontal resolution are obtained at 21:56:59 UTC on 8 August 2019,with the maximum wind speed,38.9 m·s^(-1).Validating the SAR-retrieved winds with buoymeasured wind speeds,we find that the root mean square error(RMSE)is 1.86 m·s^(-1),and correlation coefficient,0.92.This suggests that wind speeds retrieved from GF-3 SAR are reliable.Both the European Centre for MediumRange Weather Forecasts(ECMWF)fine grid operational forecast products with spatial resolution,and China Global/Regional Assimilation and Prediction Enhance System(GRAPES)have good performances on surface wind prediction under weak wind speed condition(<24 m·s^(-1)),but underestimate the maximum wind speed when the storm is intensified as a severe tropical storm(>24m·s^(-1)).With respect to SAR-retrieved wind speeds,the RMSEs are 5.24 m·s^(–1) for ECMWF and 5.17 m·s^(–1) for GRAPES,with biases of 4.16 m·s^(–1) for ECMWF and 3.84 m·s^(-1)for GRAPES during Super Typhoon Lekima(2019). 展开更多
关键词 synthetic aperture radar wind speed numerical weather predication(NWP) TYPHOON
原文传递
Application of SWAN model for storm generated wave simulation in the Canadian Beaufort Sea 被引量:2
18
作者 Md.Azharul Hoque william perrie Steven M.Solomon 《Journal of Ocean Engineering and Science》 SCIE 2020年第1期19-34,共16页
The wave model SWAN(Simulating WAves Nearshore)is implemented for the Canadian Beaufort Sea and storm generated waves are investigated through comparisons between in situ buoy observations and numerical simulations.Si... The wave model SWAN(Simulating WAves Nearshore)is implemented for the Canadian Beaufort Sea and storm generated waves are investigated through comparisons between in situ buoy observations and numerical simulations.Simulations are performed for four storms using the SWAN wave model.We specifically use SWAN’s non-stationary and two-dimensional modes in a fine resolution nested domain within a coarse resolution domain.Two established whitecapping formulations in SWAN are examined;one is dependent on mean spectral wave steepness and the other is on local spectral steepness.Model simulations in the shallow fine resolution domain also consider the effects of bottom friction and nonlinear triad interactions.For the Beaufort Sea study area,wave simulations in which the white capping formulation is dependent on local spectral steepness are better than those where the dependency is on mean spectral steepness;however implementation of bottom friction term and triad mechanisms in the present study does not lead to any notable enhancement in the simulations. 展开更多
关键词 Arctic Ocean Beaufort Sea Mackenzie delta Storm waves SWAN.
原文传递
Spatial and temporal variability of sea ice deformation rates in the Arctic Ocean observed by RADARSAT-1 被引量:2
19
作者 XIE Tao william perrie +3 位作者 FANG He ZHAO Li YU WenJin HE YiJun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期858-865,共8页
Sea ice deformation parameters are important for elucidation of the properties and characteristics of ice-ocean models.Observations of sea ice motion over 11.5 year period(November 1996–April 2008) are used to calcul... Sea ice deformation parameters are important for elucidation of the properties and characteristics of ice-ocean models.Observations of sea ice motion over 11.5 year period(November 1996–April 2008) are used to calculate ice motion divergence and shear rates, and thus, to construct total deformation rate(TDR) estimates with respect to spatial and temporal variability in the Arctic Ocean. Strong sea ice deformation signal(SDS) rates are identified when TDR>0.01 day^(-1), and very strong SDS events,when TDR>0.05 day^(-1). These calculations are based on measurements made by the RADARSAT-1 Geophysical Processer System(RGPS). Statistical analysis of the SDS data suggest the following features:(1) Mean SDS and the SDS probability distributions are larger in "low latitudes" of the Arctic Ocean(less than 80°N) than in "high latitudes"(above 80°N), in both summer and winter;(2) very high SDS probabilities distributions and mean SDS values occur in coastal areas, e.g. the East Siberian Sea, Chukchi Sea and Beaufort Sea;(3) areas with relatively low TDR values, in the range from 0.01 day^(-1) to 0.05 day^(-1), cover much of the Arctic Ocean, in summer and winter;(4) of the entire TDR dataset, 45.89% belong to SDS, with summer the SDS percentage, 59.06%,and the winter SDS percentage, 40.50%. Statistically, the summer mean SDS, SDS percentage and very strong SDS are larger than corresponding values in the winter for each year, and show slight increasing tendencies during the years from 1997 to 2007.These results suggest important constraints for accurate simulations of very strong SDS in ice-ocean models. 展开更多
关键词 Sea ice deformation RGPS SAR Arctic Ocean Arctic amplification
原文传递
Tropical Cyclone Ocean Winds and Structure Parameters Retrieved from Cross-Polarized SAR Measurements
20
作者 He FANG Gaofeng FAN +4 位作者 william perrie Zhengquan LI Chi ZHANG Guosheng ZHANG Jingsong YANG 《Journal of Meteorological Research》 SCIE 2024年第5期937-953,共17页
Spaceborne synthetic aperture radar(SAR)can provide unique capabilities to measure ocean surface winds under tropical cyclones(TCs),on synoptic scales,and at a very high spatial resolution.In this paper,we first discu... Spaceborne synthetic aperture radar(SAR)can provide unique capabilities to measure ocean surface winds under tropical cyclones(TCs),on synoptic scales,and at a very high spatial resolution.In this paper,we first discuss the accuracy and reliability of SAR-retrieved TC marine winds.The results show that wind retrievals from SAR images are in good agreement with Stepped Frequency Microwave Radiometer(SFMR)measurements,with root-mean-square error(RMSE)and correlation coefficient(CC)of 3.52 m s^(−1) and 0.91,respectively.Based on the marine winds retrieved from SAR images,a relatively simple method is applied to extract the storm intensity(maximum wind speed)and wind radii(R34,R50,and R64)from 234 cross-polarized SAR images,in the Northwest Pacific Ocean from 2015 to 2023.The SAR-retrieved TC wind radii and intensities are compared with the best-track reports,with RMSEs for R34,R50,and R64 being 48.32,41.88,and 38.51 km,and CCs being 0.87,0.83,and 0.65,respectively.In terms of TC intensity,the RMSE and bias between SAR estimates and best-track data are 7.32 and 0.38 m s^(−1),respectively.For TC Surigae(2023),we found that employing a combination of multiplatform SARs,acquired within a short time interval,has the potential to simultaneously measure the intensity and wind structure parameters.In addition,for a storm with a long life cycle,the multitemporal synergistic SARs can be used to investigate fine-scale features of the TC ocean winds,as well as the evolution of TC surface wind intensities and wind structures. 展开更多
关键词 tropical cyclone synthetic aperture radar(SAR) ocean surface wind tropical cyclone structure wind radii
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部