The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years,yet its origin remains unresolved.In the present study,we characterised eight samples of the reef at four lo...The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years,yet its origin remains unresolved.In the present study,we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy.Our results indicate that the Merensky Reef formed through a range of diverse processes.Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth.The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow.Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation.The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts.Olivine-hosted melt inclusions containing Cl-rich apatite,sodic plagioclase,and phlogopite suggest the presence of highly evolved,volatile-rich melts.Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase,possibly triggered by flux of heat,acidic fluids,or hydrous melt.Together,these data suggest that the reef formed through a combination of magmatic,hydrodynamic and hydromagmatic processes.展开更多
Aim: This study determined whether prior brushing with desensitizing toothpastes (Sensodyne Rapid Relief and Colgate Pro-Relief) affected the shear bond strengths of composite to dentine surfaces after appropriate use...Aim: This study determined whether prior brushing with desensitizing toothpastes (Sensodyne Rapid Relief and Colgate Pro-Relief) affected the shear bond strengths of composite to dentine surfaces after appropriate use of two different dentine bonding agents (SingleBond and PQ-1). Materials and Methods: Sixty caries free molar teeth were cleaned, disinfected and embedded in individual cylinders of polymethylmethracyrlate. The occulsal surfaces were flattened to expose dentine and finished down with 600 grit silicone carbide paper. The teeth were randomly divided into six groups of 10 teeth each. Two groups served as control where dentine surfaces were brushed with pumice slurry. Of the remaining 4 groups, 2 groups were brushed with Sensodyne Rapid Relief and 2 groups brushed with Colgate Pro-Relief. The dentine surfaces were brushed to simulate 2 weeks of twice-daily toothpaste use. The specimens in each of the control groups and experimental groups were subjected to dentine bonding procedures (Single Bond or PQ-1), and application of hybrid composite resin (Z-250) according to the manufacturer’s instructions. A universal material testing machine, with a cross head speed of 0.05 mm/min was used to determine shear bond strengths. Results: Mean shear bond strengths ranged from 5.71 MPa (Colgate pretreatment, composite bonded with Single Bond) to 9.07 MPa (Sensodyne pretreatment, composite bonded with Single Bond). Results showed neither of the main effects, of toothpaste type or bonding agent were significant (p > 0.05) but their interaction was (F = 4.25, p = 0.02). Post hoc analysis showed that teeth brushed with the Sensodyne group, treated with the unfilled dentine bonding agent had a significantly higher bond strength than those treated with the filled dentine bonding agent. Conclusion: The desensitizing toothpastes that use the mechanism of occlusion of open dentinal tubules in the preliminary management of tooth sensitivity should not have an adverse effect on future restorative treatment modalities.展开更多
文摘The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years,yet its origin remains unresolved.In the present study,we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy.Our results indicate that the Merensky Reef formed through a range of diverse processes.Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth.The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow.Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation.The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts.Olivine-hosted melt inclusions containing Cl-rich apatite,sodic plagioclase,and phlogopite suggest the presence of highly evolved,volatile-rich melts.Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase,possibly triggered by flux of heat,acidic fluids,or hydrous melt.Together,these data suggest that the reef formed through a combination of magmatic,hydrodynamic and hydromagmatic processes.
文摘Aim: This study determined whether prior brushing with desensitizing toothpastes (Sensodyne Rapid Relief and Colgate Pro-Relief) affected the shear bond strengths of composite to dentine surfaces after appropriate use of two different dentine bonding agents (SingleBond and PQ-1). Materials and Methods: Sixty caries free molar teeth were cleaned, disinfected and embedded in individual cylinders of polymethylmethracyrlate. The occulsal surfaces were flattened to expose dentine and finished down with 600 grit silicone carbide paper. The teeth were randomly divided into six groups of 10 teeth each. Two groups served as control where dentine surfaces were brushed with pumice slurry. Of the remaining 4 groups, 2 groups were brushed with Sensodyne Rapid Relief and 2 groups brushed with Colgate Pro-Relief. The dentine surfaces were brushed to simulate 2 weeks of twice-daily toothpaste use. The specimens in each of the control groups and experimental groups were subjected to dentine bonding procedures (Single Bond or PQ-1), and application of hybrid composite resin (Z-250) according to the manufacturer’s instructions. A universal material testing machine, with a cross head speed of 0.05 mm/min was used to determine shear bond strengths. Results: Mean shear bond strengths ranged from 5.71 MPa (Colgate pretreatment, composite bonded with Single Bond) to 9.07 MPa (Sensodyne pretreatment, composite bonded with Single Bond). Results showed neither of the main effects, of toothpaste type or bonding agent were significant (p > 0.05) but their interaction was (F = 4.25, p = 0.02). Post hoc analysis showed that teeth brushed with the Sensodyne group, treated with the unfilled dentine bonding agent had a significantly higher bond strength than those treated with the filled dentine bonding agent. Conclusion: The desensitizing toothpastes that use the mechanism of occlusion of open dentinal tubules in the preliminary management of tooth sensitivity should not have an adverse effect on future restorative treatment modalities.