期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Dual‑Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease
1
作者 Dandan Chu Mengyang Zhao +8 位作者 Shisong Rong wonho jhe Xiaolu Cai Yi Xiao Wei Zhang Xingchen Geng Zhanrong Li Xingcai Zhang Jingguo Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期439-457,共19页
Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Alt... Dry eye disease(DED)is a major ocular pathology worldwide,causing serious ocular discomfort and even visual impairment.The incidence of DED is gradually increasing with the highfrequency use of electronic products.Although inflammation is core cause of the DED vicious cycle,reactive oxygen species(ROS)play a pivotal role in the vicious cycle by regulating inflammation from upstream.Therefore,current therapies merely targeting inflammation show the failure of DED treatment.Here,a novel dual-atom nanozymes(DAN)-based eye drops are developed.The antioxidative DAN is successfully prepared by embedding Fe and Mn bimetallic single-atoms in N-doped carbon material and modifying it with a hydrophilic polymer.The in vitro and in vivo results demonstrate the DAN is endowed with superior biological activity in scavenging excessive ROS,inhibiting NLRP3 inflammasome activation,decreasing proinflammatory cytokines expression,and suppressing cell apoptosis.Consequently,the DAN effectively alleviate ocular inflammation,promote corneal epithelial repair,recover goblet cell density and tear secretion,thus breaking the DED vicious cycle.Our findings open an avenue to make the DAN as an intervention form to DED and ROSmediated inflammatory diseases. 展开更多
关键词 Dry eye disease DAN Dual-atom nanozyme Vicious cycle NLRP3 inflammasome NANOMEDICINE
下载PDF
Position-resolved Surface Characterization and Nanofabrication Using an Optical Microscope Combined with a Nanopipette/Quartz Tuning Fork Atomic Force Microscope 被引量:2
2
作者 Sangmin An Baekman Sung +6 位作者 Haneol Noh Corey Stambaugh Soyoung Kwon Kunyoung Lee Bongsu Kim Qhwan Kim wonho jhe 《Nano-Micro Letters》 SCIE EI CAS 2014年第1期70-79,共10页
In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AF... In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane(PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization(force spectroscopy/microscopy) using the quartz tuning fork(QTF) sensor. Nanofabrication is achieved by accurately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture. 展开更多
关键词 Surface characterization Nanopipette QTF-AFM Optical microscope
下载PDF
Sorting Gold and Sand(Silica) Using Atomic Force Microscope-Based Dielectrophoresis 被引量:1
3
作者 Chungman Kim Sunghoon Hong +3 位作者 Dongha Shin Sangmin An Xingcai Zhang wonho jhe 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期1-11,共11页
Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures.However,the curre... Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures.However,the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir,which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle.Here,we propose a dielectrophoresis(DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork(QTF)-atomic force microscope(AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions.We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation,which confirmed the surfaceenhanced Raman spectroscopy(SERS).To validate the scheme,we also performed a simulation for the system and found qualitative agreement with the experimental results.The method that combines DEP,pipette-based AFM,and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning,materials sorting,and diverse advanced applications. 展开更多
关键词 Dielectrophoresis-empowered Pipette/AFM platform On-demand materials sorting Additive 3D printing Multimaterial nano-patterning Nanopipette-based atomic force microscope
下载PDF
Fabrication and Characterization of Au Nanoparticle-aggregated Nanowires by Using Nanomeniscus-induced Colloidal Stacking Method
4
作者 Sangmin An wonho jhe 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期27-34,共8页
We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-base... We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-based atomic force microscope in ambient conditions, and the stacking particles form Au nanoparticle-aggregated nanowire while the nozzle retracts from the surface. Their mechanical properties with relatively low elastic modulus are in situ investigated by using the same apparatus. 展开更多
关键词 Au nanoparticle-aggregated nanowire Nanomeniscus-induced colloidal stacking method Atomic force microscope Liquid–solid coexistence phase
下载PDF
Capillary grip-induced stick-slip motion
5
作者 Sangmin An Manhee Lee +1 位作者 Bongsu Kim wonho jhe 《Nano Research》 SCIE EI CSCD 2022年第8期7384-7391,共8页
We present capillary grip-induced stick-slip motion,a nanoscale tribological effect,where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by ... We present capillary grip-induced stick-slip motion,a nanoscale tribological effect,where the role of a nanoscale confined water meniscus formed between a buckled sharp tip and a glass or mica surface is addressed by shear dynamic force measurement.We obtained the effective elasticity,viscosity,conservative(elastic)and non-conservative(viscous)forces,energy dissipation,and lateral force using small oscillation,amplitude-modulation,and shear-mode quartz tuning fork-atomic force microscopy(QTFAFM).We distinguished the conservative and non-conservative forces by investigating the dependence of normal load and relative humidity,slip length,and stick-slip frequency.We found that the confined nanoscale water enhances the lateral forces via capillary grip-induced stick-slip on a rough surface,resulting in an increase of static lateral force(3-fold for both substrates)and kinetic lateral force(6-fold for glass,3-fold for mica).This work provides quantitative and systematic understanding of nanoscale tribology properties in humid ambient conditions and is thus useful for control of friction as well as characterization of tribology in nanomaterials and nanodevices. 展开更多
关键词 dynamic force measurement nanoscale water meniscus relative humidity lateral force stick-slip motion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部