期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recent progress in production and usage of hydrogen peroxide 被引量:11
1
作者 Shunichi Fukuzumi Yong-Min Lee wonwoo nam 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1241-1252,共12页
Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p... Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant. 展开更多
关键词 Hydrogen peroxide production Water oxidation Dioxygen reduction Photocatalytic oxygenation Reaction kinetics and mechanism
下载PDF
A cobalt(Ⅱ)porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis 被引量:1
2
作者 Xialiang Li Ping Li +10 位作者 Jindou Yang Lisi Xie Ni Wang Haitao Lei Chaochao Zhang Wei Zhang Yong-Min Lee Weiqiang Zhang Shunichi Fukuzumi wonwoo nam Rui Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期617-621,I0015,共6页
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However... Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4]. 展开更多
关键词 Molecular electrocatalysis Cobalt porphyrin Axial ligand effect Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Theoretical investigation on the elusive biomimetic iron(Ⅲ)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction
3
作者 Lanping Gao Xiaolu Chen +4 位作者 Dongru Sun Hua Zhao Yufen Zhao wonwoo nam Yong Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3857-3861,共5页
Introduction of iodosylarnes into biomimetic nonheme chemistry has made great achievement on identification of the subtle metal-oxygen reaction intermediates. However, after more than three decades of experimental and... Introduction of iodosylarnes into biomimetic nonheme chemistry has made great achievement on identification of the subtle metal-oxygen reaction intermediates. However, after more than three decades of experimental and theoretical efforts the nature of the metal-iodosylarene adducts and the related dichotomous one-oxidant/multiple-oxident controversy have remained a matter of speculation. Herein, we report a theoretical study of the structure-activity relationship of the noted iron(Ⅲ)-iodsylarene complex,FeⅢ(Ph IO)(OTf)3(1), in oxygenation of cyclohexene. The calculated results revealed that 1 behaves like a chameleon by adapting its roles as a 2 e-oxidant or an oxygen donor, as a response to the regioselective attack of the C–H bond and the C=C bond. The oxidative C–H bond activation by 1 was found, for the first time, to proceed via a novel hydride transfer process to form a cyclohexene carbonium intermediate,such non-rebound step triggers the Ritter reaction to uptake an acetonitrile molecule to form the amide product, or proceeds with the rebound of the hydroxyl group return to the solvent cage to form the hydroxylated product. While in the C=C bond activation, 1 is a normal oxygen donor and shows two-state reactivity to present the epoxide product via a direct oxygen atom transfer mechanism. These mechanistic findings fit and explain the famous Valentine’s experiments and enrich the non-rebound scenario in bioinorganic chemistry. 展开更多
关键词 Reaction mechanism DFT calculations Metal-iodosylbenzene Ritter reaction Olefin oxidation
原文传递
Nonheme Iron-Catalyzed Enantioselective cis-Dihydroxylation of Aliphatic Acrylates as Mimics of Rieske Dioxygenases
4
作者 Jie Chen Xiu Luo +5 位作者 Ying Sun Si Si Yuankai Xu Yong-Min Lee wonwoo nam Bin Wang 《CCS Chemistry》 CAS 2022年第7期2369-2381,共13页
Enantioselective cis-dihydroxylation of alkenes represents an ideal route to synthesize enantioenriched syn-2,3-dihydroxy esters that are important structural motifs in numerous biologically and pharmaceutically relev... Enantioselective cis-dihydroxylation of alkenes represents an ideal route to synthesize enantioenriched syn-2,3-dihydroxy esters that are important structural motifs in numerous biologically and pharmaceutically relevant molecules.Bioinspired nonheme iron-catalyzed enantioselective cis-dihydroxylation meets the requirement of the modern synthetic chemistry from the atomic economy,green chemistry,and sustainable development perspectives.However,nonheme iron-catalyzed enantioselective cis-dihydroxylation is much underdeveloped because of the formidable challenges of controlling chemo-and enantioselectivities and product selectivity caused by the competitive epoxidation,cis-dihydroxylation,and overoxidation reactions.Herein,we disclose the fabrication of a biologically inspired nonheme iron complex-catalyzed enantioselective cis-dihydroxylation of multisubstituted acrylates using hydrogen peroxide(H_(2)O_(2))as the terminal oxidant by controlling the non-ligating or weakly ligating counterions of iron(Ⅱ)complexes,demonstrating a dramatic counteranion effect on the enantioselective cisdihydroxylation of olefins by H_(2)O_(2) catalyzed by nonheme iron complexes.A range of structurally disparate alkenes were transformed to the corresponding syn-2,3-dihydroxy esters in practically useful yields with exquisite chemo-and enantioselectivities(up to 99% ee).Given the mild and benign nature of this biologically inspired oxidation system as well as the ubiquity and synthetic utility of enantioenriched syn-2,3-dihydroxy esters as pharmaceuticals candidates and natural products,we expect that this strategy could serve as a promising complement to the well-known Sharpless asymmetric dihydroxylation,which is the chemical reaction of an alkene with OsO_(4) to produce a vicinal diol. 展开更多
关键词 bioinspired catalysis Rieske dioxygenase cis-dihydroxylation nonheme iron catalyst tetradentate nitrogen-donor ligand
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部