This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are pr...This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.展开更多
The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.Thi...The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.展开更多
文摘This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.
基金supported in part by the National Natural Science Foundation of China (No. 61774092)。
文摘The Ultra-WideBand(UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication.This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB(IR-UWB) and FrequencyModulation UWB(FM-UWB) methods. The link margin enhancement technique, Very-WideBand(VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things(IoT) applications.