Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simul...Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
基金Supported by the National Natural Science Foundation of China(42275039 and 42022038)。
文摘Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.