The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing mo...The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing models and solutions,making it difficult to comprehensively compare scholars'studies with current work.In this paper,we aim to address this issue by presenting a comprehensive overview of mainstream IES models and clarifying their relationships,thereby providing guidance for scholars in selecting appro-priate models.Additionally,we introduce several widely used solvers for solving algebraic and differential equations,along with their detailed implementations in the energy flow analysis of IES.Furthermore,we conduct extensive testing and demonstration of these models and methods in various cases to establish benchmarking datasets.To facilitate reproducibility,verification and comparisons,we provide open‐source access to these datasets,including system data,analysis settings and implementations of the various solvers in the mainstream models.Scholars can utilise the provided datasets to reproduce the results,verify the findings and perform comparative analyses.Moreover,they have the flexibility to customise these settings according to their specific requirements.展开更多
基金The National Science Fund for Distinguished Young Scholars,Grant/Award Number:52325703IEEE Power and Energy Society Working Group on Test Systems for Economic Analysis。
文摘The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing models and solutions,making it difficult to comprehensively compare scholars'studies with current work.In this paper,we aim to address this issue by presenting a comprehensive overview of mainstream IES models and clarifying their relationships,thereby providing guidance for scholars in selecting appro-priate models.Additionally,we introduce several widely used solvers for solving algebraic and differential equations,along with their detailed implementations in the energy flow analysis of IES.Furthermore,we conduct extensive testing and demonstration of these models and methods in various cases to establish benchmarking datasets.To facilitate reproducibility,verification and comparisons,we provide open‐source access to these datasets,including system data,analysis settings and implementations of the various solvers in the mainstream models.Scholars can utilise the provided datasets to reproduce the results,verify the findings and perform comparative analyses.Moreover,they have the flexibility to customise these settings according to their specific requirements.