期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024
1
作者 M.Ablikim M.N.Achasov +659 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang W.P.Wang x.wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第12期1-10,共10页
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ... We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements. 展开更多
关键词 Bhabha scattering events integrated luminosity CROSS-SECTION
原文传递
流体剪应力作用对内皮细胞变形的影响 被引量:5
2
作者 刘肖珩 P.WACHE +1 位作者 x.wang 陈槐卿 《生物物理学报》 CAS CSCD 北大核心 2003年第3期333-338,共6页
血液流动和内皮的耦合是重要的生物医学问题,引起了学者们的广泛兴趣。目前已知流场剪应力对内皮细胞的形态和功能有重要影响,流体剪应力被认为是引起内皮细胞重建的始发信号。所以,了解流体剪应力与内皮细胞之间的相互作用机制是十分... 血液流动和内皮的耦合是重要的生物医学问题,引起了学者们的广泛兴趣。目前已知流场剪应力对内皮细胞的形态和功能有重要影响,流体剪应力被认为是引起内皮细胞重建的始发信号。所以,了解流体剪应力与内皮细胞之间的相互作用机制是十分重要的。建立了一个理论模型来模拟流场剪应力与内皮细胞之间的相互作用。根据二维计算流体动力学方法研究了流体剪应力作用下内皮细胞表面的应力、压力分布。模拟结果表明:(1) 内皮细胞的变形随琢(对应于流体作用于细胞表面的剪应力)的变化而变化。当琢很小时(<0.02),流场剪应力对细胞变形的影响很小;随着琢的增大,细胞的变形也相应增大;当琢达到0.20以上时,细胞的变形变化很小,即细胞的形态保持相对稳定。(2) 流动引起了细胞表面应力和压力分布的不均匀,从而导致了细胞的变形,但内皮细胞的最大应力总是位于细胞的顶点。同时,用流室系统提供剪切流动,测量了不同剪应力作用下培养的人主动脉内皮细胞的变形,所得到的实验结果与数值模拟结果吻合。结果提示,由于剪切流动引起细胞表面应力分布的不均一,可能在细胞激活和细胞功能的调节(如细胞骨架的调节、粘附分子的表达与分布等)机制上具有特殊的作用。为应用流体动力学理论研究细胞(内皮细胞、白细胞等) 展开更多
关键词 剪应力 内皮细胞 变形 流体动力学 血液流动
下载PDF
A numerical method based on boundary integral equations and radial basis functions for plane anisotropic thermoelastostatic equations with general variable coefficients 被引量:2
3
作者 W.T.ANG x.wang 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期551-566,共16页
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ... A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved. 展开更多
关键词 elliptic partial differential equation variable coefficient boundary element method radial basis function anisotropic thermoelastostatics
下载PDF
A micromechanical model based on hypersingular integro-differential equations for analyzing micro-crazed interfaces between dissimilar elastic materials 被引量:1
4
作者 x.wang W.T.ANG H.FAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第2期193-206,共14页
The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system ... The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes. 展开更多
关键词 MICROMECHANICAL modeling micro-crazed interface effective STIFFNESS COEFFICIENT hypersingular integro-differential equation
下载PDF
Experimental Hamiltonian Learning of an 11-Qubit Solid-State Quantum Spin Register
5
作者 P.-Y.Hou L.He +7 位作者 F.Wang X.-Z.Huang W.-G.Zhang X.-L.Ouyang x.wang W.-Q.Lian X.-Y.Chang L.-M.Duan 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第10期11-16,共6页
Learning the Hamiltonian of a quantum system is indispensable for prediction of the system dynamics and realization of high fidelity quantum gates.However,it is a significant challenge to efficiently characterize the ... Learning the Hamiltonian of a quantum system is indispensable for prediction of the system dynamics and realization of high fidelity quantum gates.However,it is a significant challenge to efficiently characterize the Hamiltonian which has a Hilbert space dimension exponentially growing with the system size.Here,we develop and implement an adaptive method to learn the effective Hamiltonian of an 11-qubit quantum system consisting of one electron spin and ten nuclear spins associated with a single nitrogen-vacancy center in a diamond.We validate the estimated Hamiltonian by designing universal quantum gates based on the learnt Hamiltonian and implementing these gates in the experiment.Our experimental result demonstrates a well-characterized 11-qubit quantum spin register with the ability to test quantum algorithms,and shows our Hamiltonian learning method as a useful tool for characterizing the Hamiltonian of the nodes in a quantum network with solid-state spin qubits. 展开更多
关键词 HAMILTONIAN QUANTUM system
下载PDF
Study of strain and compostion of the self—organized GE dots by grazing incident X—ray diffraction
6
作者 X.Jiang Z.Jiang +4 位作者 W.Jiang Q.Jia W.Zheng D.Xian x.wang 《Beijing Synchrotron Radiation Facility》 2001年第2期194-197, ,共4页
Grazing incident X-ray diffraction at different grazing angles for self-organized Ge dots grown on Si(001) are carried out and lattice constant expansions of 1.2?parallel to the surface as compared with the Si lattice... Grazing incident X-ray diffraction at different grazing angles for self-organized Ge dots grown on Si(001) are carried out and lattice constant expansions of 1.2?parallel to the surface as compared with the Si lattice are found within the Ge dots.A 3.1?lattice expansion of the Ge dots along the growth direction is also fund by ordinary X-ray(004) diffraction.According to the Poisson equation and the Vegard law,our results infer that the Ge dot should be a partially strain relaxed SiGe alloy with Ge content of abuot 55?2001 Elsevier Science B.V.All rights reserved. 展开更多
关键词 X射线衍射分析 自组织 锗薄膜生长 硅基底 半导体材料
下载PDF
Microstructure-Related Mechanical Properties of Nacre in Pinctada Shell
7
作者 S.X.Yan H.M.Ji +1 位作者 x.wang X.W.Li 《功能材料信息》 2016年第4期48-48,共1页
Biological materials with various outstanding properties have been studied for a long time by investigators.As a kind of natural biological material,sea shells exhibiting the complexity and unique architectures have d... Biological materials with various outstanding properties have been studied for a long time by investigators.As a kind of natural biological material,sea shells exhibiting the complexity and unique architectures have drawn much attention in recent years.In the present work,Pinctada shell was selected as the target material,and its 展开更多
关键词 英语 阅读 理解 生物材料
下载PDF
Two Dimensional Layered Films for Electronics and Optoelectronics
8
作者 P.A.Hu W.Feng +2 位作者 J.Zhang W.Zheng x.wang 《功能材料信息》 2016年第1期51-52,共2页
Two dimensional layered films such as graphene and layered inorganic materials are promising for future nanoscale electronics and optics.We also performance of dielectric layer and metal contacts on the performces of ... Two dimensional layered films such as graphene and layered inorganic materials are promising for future nanoscale electronics and optics.We also performance of dielectric layer and metal contacts on the performces of field 展开更多
关键词 英语 阅读 理解 陶瓷材料
下载PDF
羊毛的强力和羊毛增强法
9
作者 x.wang 庄海帆 《国外纺织技术(纺织针织服装化纤染整)》 1999年第8期6-7,共2页
研究证实,羊毛纤维的强力遵循Weibull分布,并在本研究中已研制出一个实验性的方法。 在研究单纤维强力分布中,Peirce(1926年)首先提出了“最弱环”理论,当较短的长度统计值是已知的时,并且定量地运用到含有纤维的结构,预测纱线的断裂强... 研究证实,羊毛纤维的强力遵循Weibull分布,并在本研究中已研制出一个实验性的方法。 在研究单纤维强力分布中,Peirce(1926年)首先提出了“最弱环”理论,当较短的长度统计值是已知的时,并且定量地运用到含有纤维的结构,预测纱线的断裂强力的均值和变异。 关于束和成分长丝断裂强力之间分布相互关系的另一准确的统计理论早已由Daniels研究出来(1945年),Colemon(1958年)提出了固定来源的经典长纤维的断裂强力应该服从Weibull分布。 展开更多
关键词 强力 羊毛纤维 断裂强度 增强
下载PDF
Coherent Resonant Tunneling through Double Metallic QuantumWell States
10
作者 B.S.Tao C.H.Wan +14 位作者 P.Tang J.F.Feng H.X.Wei x.wang S.Andrieu H.X.Yang M.Chshiev X.Devaux T.Hauet F.Montaigne S.Mangi M.Heh D.Lacour X.F.Han Y.Lu 《Bulletin of the Chinese Academy of Sciences》 2019年第2期103-104,共2页
Due to its far-reaching scientific impact and broad applications, coherent resonant tunneling effect in magnetic tunnel junctions has aroused intensive interest from spintronic and semiconductor communities. Actually,... Due to its far-reaching scientific impact and broad applications, coherent resonant tunneling effect in magnetic tunnel junctions has aroused intensive interest from spintronic and semiconductor communities. Actually, resonant tunneling effect has been verified and utilized in semiconductor-based multiquantum wells, such as resonant tunneling diode and light-emitting diodes with multiple quantum wells and etc. 展开更多
关键词 APPLICATIONS Actually QUANTUM
下载PDF
Amplitude analysis of the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)
11
作者 M.Ablikim M.N.Achasov +642 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang JA.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.H\"olzken N.H\"usken N.in der Wiesche M.Irshad J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui A.Kupsc W.K\"uhn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao J.J.Qin L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi R.S.Shi S.Y.Shi X.Shi X.D.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang Meng Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang x.wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.Wei D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu C.Z.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期6-33,共28页
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays... Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay. 展开更多
关键词 BESIII D^(0)meson decays amplitude analysis CP-even fraction
原文传递
Determination of the number ofψ(3686)events taken at BESⅢ
12
作者 M.Ablikim M.N.Achasov +660 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li Ke Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Z.Li Xiaoyu Li Y.G.Li Z.J.Li Z.X.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.H.Liu Fang Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang x.wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang Tao Yang Y.Yang Y.F.Yang Y.X.Yang Yifan Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang Shuihan Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Yao Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第9期8-20,共13页
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ... The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6. 展开更多
关键词 ψ(3686) inclusive process Hadronic events BESⅢdetector
原文传递
Gradient Structured Copper by Rotationally Accelerated Shot Peening 被引量:17
13
作者 x.wang Y.S.Li +2 位作者 Q.Z.ang Y.H.Zhao Y.T.Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期758-761,共4页
A new technology-rotationally accelerated shot peening(RASP), was developed to prepare gradient structured materials. By using centrifugal acceleration principle and large steel balls, the RASP technology can produc... A new technology-rotationally accelerated shot peening(RASP), was developed to prepare gradient structured materials. By using centrifugal acceleration principle and large steel balls, the RASP technology can produce much higher impact energy compared to conventional shot peening. As a proof-of-concept demonstration, the RASP was utilized to refine the surface layer in pure copper(Cu) with an average grain size of 85 nm. The grain size increases largely from surface downwards the bulk, forming an800 ?m thick gradient-structured surface layer and consequently a micro-hardness gradient. The difference between the RASP technology and other established techniques in preparing gradient structured materials is discussed. The RASP technology exhibits a promoting future for large-scale manufacturing of gradient materials. 展开更多
关键词 Microstructure Rotationally accelerated shot peening Gradient structure Hardness Copper
原文传递
Measurements of the center-of-mass energies of e^(+)e^(-)collisions at BESIII 被引量:1
14
作者 M.Ablikim M.N.Achasov +511 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen G.Chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J.Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann G.Y.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain N Husken W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kuhn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Xiaoyu Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L. Z. Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping S.Pogodin R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi S.Qian W.B.Qian Z.Qian C.F.Qiao L.Q.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen H.F.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi J.J.Song W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren W.H.Tian Y.T.Tian I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang x.wang X.F.Wang X.L.Wang Y.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu Y.C.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C. Z. Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar X.Zeng Zeng Y.Zeng A.Q.Zhang B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.M.Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Yan Zhang Yao Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第10期7-15,共9页
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ... During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period. 展开更多
关键词 center-of-mass ENERGY e^(+)e^(-) ANNIHILATION BESIII
原文传递
Future Physics Programme of BESⅢ 被引量:542
15
作者 M.Ablikim M.N.Achasov +486 位作者 P.Adlarson S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi J Biernat J.Bloms I.Boyko R.A.Briere L.Calibbi H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang J.Charles G.Chelkov Chen G.Chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen H.Y.Cheng W.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai J.P.Dai X.C.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig Denysenko M.Destefanis S.Descotes-Genon F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du S.I.Eidelman J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo F.K.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth M.G.Kurth W.Kuhn J.S.Lange P.Larin L.Lavezzi H.Leithoff T.Lenz C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin Y.J.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu T.Liu X.Liu X.Y.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters A.A.Petrov J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka A.Rivetti V.Rodin M.Rolo G.Rong J.L.Rosner Ch.Rosner M.Rump A.Sarantsev M.Savrie K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi X.D Shi J.J.Song Q.Q.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang V.Thoren B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang M.Z.Wang Wang Meng P.L.Wang R.M.Wang W.P.Wang x.wang X.F.Wang X.L.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff H.W.Wen S.P.Wen U.Wiedner G.Wilkinson M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia S.Y.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie T.Y.Xing X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan X.Q.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yi Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Q.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong L.Zhou L.P.Zhou Q.Zhou X.Zhou X.K.Zhou Xingyu Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu W.J.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2020年第4期I0001-I0004,1-102,共106页
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac... There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity. 展开更多
关键词 MESON HADRON optimization
原文传递
Study of BESIII trigger efficiencies with the 2018 J/ψ data 被引量:36
16
作者 M.Ablikim M.N.Achasov +501 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen G.Chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu S.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris H Hüsken K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kühn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang L.Z.Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo b P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi T.Y.Qi S.Qian W.-B.Qian Z.Qian C.F.Qiao L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang x.wang X.F.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei P.Weidenkaff F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C.Z.Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yan Zhang Yao Zhang Yi Zhang Z.H.Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期48-55,共8页
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na... Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses. 展开更多
关键词 BESIII trigger efficiency Bhabha dimuon hadronic events
原文传递
Structure modification and recovery of amorphous Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 magnetic ribbons after autoclave treatment:SAXS and thermodynamic analysis 被引量:1
17
作者 L.Y.Guo x.wang +4 位作者 K.C.Shen K.B.Kim S.Lan X.L.Wang W.M.Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第1期118-126,共9页
The structure, crystallization kinetics and magnetic property of as-quenched Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 amorphous ribbon(R0) as well as ribbons after autoclave treatment at 100°C and 150°C(R1 and R2) have... The structure, crystallization kinetics and magnetic property of as-quenched Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 amorphous ribbon(R0) as well as ribbons after autoclave treatment at 100°C and 150°C(R1 and R2) have been systematically studied by various techniques. With increasing autoclave treatment temperature,the measured structural, kinetic and magnetic parameters of samples increase firstly, i.e. R0 < R1; and then decrease or recover to the as-quenched sample, i.e. R2 < R1 or R2 ≈ R0. These results indicate that the SROs in R1 samples increased by transforming from fcc to bcc structure during the autoclave treatment and that the autoclave treatment can decrease the large radius(r_M) MRO(medium range order),but increase the small rMMRO. The measured structural, thermal and magnetic parameters of R2 sample have a tendency to recover toward as-quenched R0 sample. The thermal and magnetic parameters of samples after solely annealing treatment at higher temperature have no obvious recover phenomenon.The uneven actions of pressure and temperature in autoclave treatment may be helpful for us to search a new method to improve the magnetic properties of Fe-based glasses. 展开更多
关键词 SAXS (small-angle X-ray scattering) FE-BASED glass Thermodynamic MAGNETIC ribbon DSC (differential scanning calorimetry)
原文传递
Laser ablation and structuring of CdZnTe with femtosecond laser pulses 被引量:1
18
作者 J.J.J.Nivas E.Allahyari +3 位作者 A.Vecchione Q.Hao S.Amoruso x.wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第13期180-185,共6页
We report an experimental investigation on laser ablation and associated surface structuring of CdZnTe by femtosecond Ti:Sa laser pulses(laser wavelengthλ≈800 nm,≈35 fs,10 Hz),in air.By exploiting different static ... We report an experimental investigation on laser ablation and associated surface structuring of CdZnTe by femtosecond Ti:Sa laser pulses(laser wavelengthλ≈800 nm,≈35 fs,10 Hz),in air.By exploiting different static irradiation conditions,the fluence threshold and the incubation effect in CdZnTe are estimated.Interestingly,surface treatment with a low laser fluence(laser pulse energy E≈5-10_μJ)and number of shots(5<N<50)show the formation of well-defined cracks in the central part of the shallow crater,which is likely associated to a different thermal expansion coefficients of Te inclusions and matrix during the sample heating and cooling processes ensuing femtosecond laser irradiation.Irradiation with a larger number of pulses(N≈500,1000)with higher pulse energies(E≈30-50μJ)results in the formation of welldefined laser-induced periodic surface structures(LIPSS)in the outskirts of the main crater,where the local fluence is well below the material ablation threshold.Both low spatial frequency and high spatial frequency LIPSS perpendicular to the laser polarization are found together and separately depending on the irradiation condition.These are ascribed to a process of progressive aggregation of randomly distributed nanoparticles produced during laser ablation of the deep crater in the region of the target irradiated by a fluence below the ablation threshold with many laser pulses. 展开更多
关键词 Laser ablation Femtosecond laser surface processing CDZNTE Laser induced periodic surface structures Laser processing
原文传递
Search for electron-antineutrinos associated with gravitational-wave events GW150914,GW151012,GW151226,GW170104,GW170608,GW170814,and GW170817 at Daya Bay 被引量:1
19
作者 F.P.An A.B.Balantekin +183 位作者 H.R.Band M.Bishai S.Blyth G.F.Cao J.Cao J.F.Chang Y.Chang H.S.Chen S.M.Chen Y.Chen Y.X.Chen J.Cheng Z.K.Cheng J.J.Cherwinka M.C.Chu J.P.Cummings O.Dalager F.S.Deng Y.Y.Ding M.V.Diwan T.Dohnal J.Dove M.Dvorak D.A.Dwyer J.P.Gallo M.Gonchar G.H.Gong H.Gong W.Q.Gu J.Y.Guo L.Guo X.H.Guo Y.H.Guo Z.Guo R.W.Hackenburg S.Hans M.He K.M.Heeger Y.K.Heng A.Higuera Y.K.Hor Y.B.Hsiung B.Z.Hu J.R.Hu T.Hu Z.J.Hu H.X.Huang X.T.Huang Y.B.Huang P.Huber D.E.Jaffe K.L.Jen X.L.Ji X.P.Ji R.A.Johnson D.Jones L.Kang S.H.Kettell S.Kohn M.Kramer T.J.Langford J.Lee J.H.C.Lee R.T.Lei R.Leitner J.K.C.Leung F.Li J.J.Li Q.J.Li S.Li S.C.Li W.D.Li X.N.Li X.Q.Li Y.F.Li Z.B.Li H.Liang C.J.Lin G.L.Lin S.Lin J.J.Ling J.M.Link L.Littenberg B.R.Littlejohn J.C.Liu J.L.Liu C.Lu H.Q.Lu J.S.Lu K.B.Luk X.B.Ma X.Y.Ma Y.Q.Ma C.Marshall D.A.Martinez Caicedo K.T.MeDonald R.D.McKeown Y.Meng J.Napolitano D.Naumov E.Naumova J.P.Ochoa-Ricoux A.OIshevskiy H.-R.Pan J.Park S.Patton J.C.Peng C.S.J.Pun F.Z.Qi M.Qi X.Qian N.Raper J.Ren C.Morales Reveco R.Rosero B.Roskovec X.C.Ruan H.Steiner J.L.Sun T.Tmej K.Treskov W.-H.Tse C.E.Tull B.Viren V.Vorobel C.H.Wang J.Wang M.Wang N.Y.Wang R.G.Wang W.Wang W.Wang x.wang Y.Wang Y.F.Wang Z.Wang Z.Wang Z.M.Wang H.Y.Wei L.H.Wei L.J.Wen K.Whisnant C.G.White H.L.H.Wong E.Worcester D.R.Wu F.L.Wu Q.Wu W.J.Wu D.M.Xia Z.Q.Xie Z.Z.Xing J.L.Xu T.Xu T.Xue C.G.Yang L.Yang Y.Z.Yang H.F.Yao M.Ye M.Yeh B.L.Young H.Z.Yu Z.Y.Yu B.B.Yue S.Zeng Y.Zeng L.Zhan C.Zhang F.Y.Zhang H.H.Zhang J.W.Zhang Q.M.Zhang X.T.Zhang Y.M.Zhang Y.X.Zhang Y.Y.Zhang Z.J.Zhang Z.P.Zhang Z.Y.Zhang J.Zhao L.Zhou H.L.Zhuang J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第5期190-201,共12页
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t... The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows. 展开更多
关键词 grav itational waves electron-antineutrinos FLUENCE upper limit
原文传递
Search for the rare decays W^(+)→D_(s)^(+)γ and Z→D^(0)γ at LHCb 被引量:1
20
作者 R.Aaij A.S.W.Abdelmotteleb +1069 位作者 C.Abellan Beteta F.Abudinén T.Ackernley B.Adeva M.Adinolfi P.Adlarson H.Afsharnia C.Agapopoulou C.A.Aidala Z.Ajaltouni S.Akar K.Akiba J.Albrecht F.Alessio M.Alexander A.Alfonso Albero Z.Aliouche P.Alvarez Cartelle R.Amalric S.Amato J.L.Amey Y.Amhis L.An L.Anderlini M.Andersson A.Andreianov M.Andreotti D.Andreou D.Ao F.Archilli A.Artamonov M.Artuso E.Aslanides M.Atzeni B.Audurier S.Bachmann M.Bachmayer J.J.Back A.Bailly-reyre P.Baladron Rodriguez V.Balagura W.Baldini J.Baptista de Souza Leite M.Barbetti R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov J.M.Basels G.Bassi B.Batsukh A.Battig A.Bay A.Beck M.Becker F.Bedeschi I.B.Bediaga A.Beiter V.Belavin S.Belin V.Bellee K.Belous I.Belov I.Belyaev G.Benane G.Bencivenni E.Ben-Haim A.Berezhnoy R.Bernet S.Bernet Andres D.Berninghoff H.C.Bernstein C.Bertella A.Bertolin C.Betancourt F.Betti Ia.Bezshyiko S.Bhasin J.Bhom L.Bian M.S.Bieker N.V.Biesuz S.Bifani P.Billoir A.Biolchini M.Birch F.C.R.Bishop A.Bitadze A.Bizzeti M.P.Blago T.Blake F.Blanc J.E.Blank S.Blusk D.Bobulska J.A.Boelhauve O.Boente Garcia T.Boettcher A.Boldyrev C.S.Bolognani R.Bolzonella N.Bondar F.Borgato S.Borghi M.Borsato J.T.Borsuk S.A.Bouchiba T.J.V.Bowcock A.Boyer C.Bozzi M.J.Bradley S.Braun A.Brea Rodriguez J.Brodzicka A.Brossa Gonzalo J.Brown D.Brundu A.Buonaura L.Buonincontri A.T.Burke C.Burr A.Bursche A.Butkevich J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese L.Calefice S.Cali R.Calladine M.Calvi M.Calvo Gomez P.Campana D.H.Campora Perez A.F.Campoverde Quezada S.Capelli L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini P.Carniti L.Carus A.Casais Vidal R.Caspary G.Casse M.Cattaneo G.Cavallero V.Cavallini S.Celani J.Cerasoli D.Cervenkov A.J.Chadwick M.G.Chapman M.Charles Ph.Charpentier C.A.Chavez Barajas M.Chefdeville C.Chen S.Chen A.Chernov S.Chernyshenko V.Chobanova S.Cholak M.Chrzaszcz A.Chubykin V.Chulikov P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek G.Ciullo P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo L.Congedo A.Contu N.Cooke I.Corredoira G.Corti B.Couturier D.C.Craik M.Cruz Torres R.Currie C.L.Da Silva S.Dadabaev L.Dai X.Dai E.Dall'Occo J.Dalseno C.D'Ambrosio J.Daniel A.Danilina P.d'Argent J.E.Davies A.Davis O.De Aguiar Francisco J.de Boer K.De Bruyn S.De Capua M.De Cian U.De Freitas Carneiro Da Graca E.De Lucia J.M.De Miranda L.De Paula M.De Serio D.De Simone P.De Simone F.De Vellis J.A.de Vries C.T.Dean F.Debernardis D.Decamp V.Dedu L.Del Buono B.Delaney H.-P.Dembinski V.Denysenko O.Deschamps F.Dettori B.Dey P.Di Nezza I.Diachkov S.Didenko L.Dieste Maronas S.Ding V.Dobishuk A.Dolmatov C.Dong A.M.Donohoe F.Dordei A.C.dos Reis L.Douglas A.G.Downes P.Duda M.W.Dudek L.Dufour V.Duk P.Durante M.M.Duras J.M.Durham D.Dutta A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman C.Eirea Orro S.Eisenhardt E.Ejopu S.Ek-In L.Eklund S.Ely A.Ene E.Epple S.Escher J.Eschle S.Esen T.Evans F.Fabiano L.N.Falcao Y.Fan B.Fang L.Fantini M.Faria S.Farry D.Fazzini L.F Felkowski M.Feo M.Fernandez Gomez A.D.Fernez F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer D.S.Fitzgerald C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty D.Foulds-Holt V.Franco Lima M.Franco Sevilla M.Frank E.Franzoso G.Frau C.Frei D.A.Friday J.Fu Q.Fuehring T.Fulghesu E.Gabriel G.Galati M.D.Galati A.Gallas Torreira D.Galli S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao Y.Gao M.Garau L.M.Garcia Martin P.Garcia Moreno J.García Pardiaas B.Garcia Plana F.A.Garcia Rosales L.Garrido C.Gaspar R.E.Geertsema D.Gerick L.L.Gerken E.Gersabeck M.Gersabeck T.Gershon L.Giambastiani V.Gibson H.K.Giemza A.L.Gilman M.Giovannetti A.Gioventù P.Gironella Gironell C.Giugliano M.A.Giza K.Gizdov E.L.Gkougkousis V.V.Gligorov C.Gabel E.Golobardes D.Golubkov A.Golutvin A.Gomes S.Gomez Fernandez F.Goncalves Abrantes M.Goncerz G.Gong I.V.Gorelov C.Gotti J.P.Grabowski T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.T.Grecu L.M.Greeven N.A.Grieser L.Grillo S.Gromov B.R.Gruberg Cazon C.Gu M.Guarise M.Guittiere P.A.Günther E.Gushchin A.Guth Y.Guz T.Gys T.Hadavizadeh C.Hadjivasiliou G.Haefeli C.Haen J.Haimberger S.C.Haines T.Halewood-leagas M.M.Halvorsen P.M.Hamilton J.Hammerich Q.Han X.Han E.B.Hansen S.Hansmann-Menzemer L.Hao N.Harnew T.Harrison C.Hasse M.Hatch J.He K.Heijhoff C.Henderson R.D.L.Henderson A.M.Hennequin K.Hennessy L.Henry J.Herd J.Heuel A.Hicheur D.Hill M.Hilton S.E.Hollitt J.Horswill R.Hou Y.Hou J.Hu J.Hu W.Hu X.Hu W.Huang X.Huang W.Hulsbergen R.J.Hunter M.Hushchyn D.Hutchcroft P.Ibis M.Idzik D.Ilin P.Ilten A.Inglessi A.Iniukhin A.Ishteev K.Ivshin R.Jacobsson H.Jage S.J.Jaimes Elles S.Jakobsen E.Jans B.K.Jashal A.Jawahery V.Jevtic E.Jiang X.Jiang Y.Jiang M.John D.Johnson C.R.Jones T.P.Jones B.Jost N.Jurik I.Juszczak S.Kandybei Y.Kang M.Karacson D.Karpenkov M.Karpov J.W.Kautz F.Keizer D.M.Keller M.Kenzie T.Ketel B.Khanji A.Kharisova S.Kholodenko G.Khreich T.Kirn V.S.Kirsebom O.Kitouni S.Klaver N.Kleijne K.Klimaszewski M.R.Kmiec S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg M.Korolev I.Kostiuk O.Kot S.Kotriakhova A.Kozachuk P.Kravchenko L.Kravchuk R.D.Krawczyk M.Kreps S.Kretzschmar P.Krokovny W.Krupa W.Krzemien J.Kubat S.Kubis W.Kucewicz M.Kucharczyk V.Kudryavtsev A.Kupsc D.Lacarrere G.Lafferty A.Lai A.Lampis D.Lancierini C.Landesa Gomez J.J.Lane R.Lane G.Lanfranchi C.Langenbruch J.Langer O.Lantwin T.Latham F.Lazzari M.Lazzaroni R.Le Gac S.H.Lee R.Lefèvre A.Leflat S.Legotin P.Lenisa O.Leroy T.Lesiak B.Leverington A.Li H.Li K.Li P.Li P.-R.Li S.Li T.Li T.Li Y.Li Z.Li X.Liang C.Lin T.Lin R.Lindner V.Lisovskyi R.Litvinov G.Liu H.Liu Q.Liu S.Liu A.Lobo Salvia A.Loi R.Lollini J.Lomba Castro I.Longstaff J.H.Lopes A.Lopez Huertas S.López Soliao G.H.Lovell Y.Lu C.Lucarelli D.Lucchesi S.Luchuk M.Lucio Martinez V.Lukashenko Y.Luo A.Lupato E.Luppi A.Lusiani K.Lynch X.-R.Lyu L.Ma R.Ma S.Maccolini F.Machefert F.Maciuc I.Mackay V.Macko P.Mackowiak L.R.Madhan Mohan A.Maevskiy D.Maisuzenko M.W.Majewski J.J.Malczewski S.Malde B.Malecki A.Malinin T.Maltsev G.Manca G.Mancinelli C.Mancuso D.Manuzzi C.A.Manzari D.Marangotto J.F.Marchand U.Marconi S.Mariani C.Marin Benito J.Marks A.M.Marshall P.J.Marshall G.Martelli G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice J.Mauricio M.Mazurek M.McCann L.Mcconnell T.H.McGrath N.T.McHugh A.McNab R.McNulty J.V.Mead B.Meadows G.Meier D.Melnychuk S.Meloni M.Merk A.Merli L.Meyer Garcia D.Miao M.Mikhasenko D.A.Milanes E.Millard M.Milovanovic M.-N.Minard A.Minotti T.Miralles S.E.Mitchell B.Mitreska D.S.Mitzel A.Madden R.A.Mohammed R.D.Moise S.Mokhnenko T.Mombacher M.Monk I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu E.Muhammad F.Muheim M.Mulder K.Müller C.H.Murphy D.Murray R.Murta P.Muzzetto P.Naik T.Nakada R.Nandakumar T.Nanut I.Nasteva M.Needham N.Neri S.Neubert N.Neufeld P.Neustroev R.Newcombe J.Nicolini E.M.Niel S.Nieswand N.Nikitin N.S.Nolte C.Normand J.Novoa Fernandez C.Nunez A.Oblakowska-Mucha V.Obraztsov T.Oeser D.P.O'Hanlon S.Okamura R.Oldeman F.Oliva C.J.G.Onderwater R.H.O'Neil J.M.Otalora Goicochea T.Ovsiannikova P.Owen A.Oyanguren O.Ozcelik K.O.Padeken B.Pagare P.R.Pais T.Pajero A.Palano M.Palutan Y.Pan G.Panshin L.Paolucci A.Papanestis M.Pappagallo L.L.Pappalardo C.Pappenheimer W.Parker C.Parkes B.Passalacqua G.Passaleva A.Pastore M.Patel C.Patrignani C.J.Pawley A.Pearce A.Pellegrino M.Pepe Altarelli S.Perazzini D.Pereima A.Pereiro Castro P.Perret M.Petric K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo H.Pham A.Philippov R.Piandani L.Pica M.Piccini B.Pietrzyk G.Pietrzyk M.Pili D.Pinci F.Pisani M.Pizzichemi V.Placinta J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo S.Ponce D.Popov S.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch V.Puill G.Punzi H.R.Qi W.Qian N.Qin S.Qu R.Quagliani N.V.Raab R.I.Rabadan Trejo B.Rachwal J.H.Rademacker R.Rajagopalan M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Rebollo De Miguel F.Redi J.Reich F.Reiss C.Remon Alepuz Z.Ren P.K.Resmi R.Ribatti A.M.Ricci S.Ricciardi K.Richardson M.Richardson-Slipper K.Rinnert P.Robbe G.Robertson A.B.Rodrigues E.Rodrigues E.Rodriguez Fernandez J.A.Rodriguez Lopez E.Rodriguez Rodriguez D.L.Rolf A.Rollings P.Roloff V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf R.A.Ruiz Fernandez J.Ruiz Vidal A.Ryzhikov J.Ryzka J.J.Saborido Silva N.Sagidova N.Sahoo B.Saitta M.Salomoni C.Sanchez Gras I.Sanderswood R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti D.Saranin G.Sarpis M.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina H.Sazak L.G.Scantlebury Smead A.Scarabotto S.Schael S.Scherl M.Schiller H.Schindler M.Schmelling B.Schmidt S.Schmitt O.Schneider A.Schopper M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciuccati S.Sellam A.Semennikov M.Senghi Soares A.Sergi N.Serra L.Sestini A.Seuthe Y.Shang D.M.Shangase M.Shapkin I.Shchemerov L.Shchutska T.Shears L.Shekhtman Z.Shen S.Sheng V.Shevchenko B.Shi E.B.Shields Y.Shimizu E.Shmanin R.Shorkin J.D.Shupperd B.G.Siddi R.Silva Coutinho G.Simi S.Simone M.Singla N.Skidmore R.Skuza T.Skwarnicki M.W.Slater J.C.Smallwood J.G.Smeaton E.Smith K.Smith M.Smith A.Snoch L.Soares Lavra M.D.Sokoloff F.J.P.Soler A.Solomin A.Solovev I.Solovyev R.Song F.L.Souza De Almeida B.Souza De Paula B.Spaan E.Spadaro Norella E.Spedicato E.Spiridenkov P.Spradlin V.Sriskaran F.Stagni M.Stahl S.Stahl S.Stanislaus E.N.Stein O.Steinkamp O.Stenyakin H.Stevens S.Stone D.Strekalina Y.S Su F.Suljik J.Sun L.Sun Y.Sun P.Svihra P.N.Swallow K.Swientek A.Szabelski T.Szumlak M.Szymanski Y.Tan S.Taneja M.D.Tat A.Terentev F.Teubert E.Thomas D.J.D.Thompson K.A.Thomson H.Tilquin V.Tisserand S.T'Jampens M.Tobin L.Tomassetti G.Tonani X.Tong D.Torres Machado D.Y.Tou S.M.Trilov C.Trippl G.Tuci A.Tully N.Tuning A.Ukleja D.J.Unverzagt A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti N.Valls Canudas M.van Beuzekom M.Van Dijk H.Van Hecke E.van Herwijnen C.B.Van Hulse M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vázquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Veronesi M.Vesterinen D.Vieira M.Vieites Diaz X.Vilasis-Cardona E.Vilella Figueras A.Villa P.Vincent F.C.Volle D.vom Bruch A.Vorobyev V.Vorobyev N.Voropaev K.Vos C.Vrahas R.Waldi J.Walsh G.Wan C.Wang G.Wang J.Wang J.Wang J.Wang J.Wang M.Wang R.Wang x.wang Y.Wang Z.Wang Z.Wang Z.Wang J.A.Ward N.K.Watson D.Websdale Y.Wei C.Weisser B.D.C.Westhenry D.J.White M.Whitehead A.R.Wiederhold D.Wiedner G.Wilkinson M.K.Wilkinson I.Williams M.Williams M.R.J.Williams R.Williams F.F.Wilson W.Wislicki M.Witek L.Witola C.P.Wong G.Wormser S.A.Wotton H.Wu J.Wu K.Wyllie Z.Xiang D.Xiao Y.Xie A.Xu J.Xu L.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Xu D.Yang S.Yang X.Yang Y.Yang Z.Yang Z.Yang L.E.Yeomans V.Yeroshenko H.Yeung H.Yin J.Yu X.Yuan E.Zaffaroni M.Zavertyaev M.Zdybal O.Zenaiev M.Zeng C.Zhang D.Zhang L.Zhang S.Zhang S.Zhang Y.Zhang Y.Zhang A.Zharkova A.Zhelezov Y.Zheng T.Zhou X.Zhou Y.Zhou V.Zhovkovska X.Zhu X.Zhu Z.Zhu V.Zhukov Q.Zou S.Zucchelli D.Zuliani G.Zunica LHCb Collaboration 《Chinese Physics C》 SCIE CAS CSCD 2023年第9期14-26,共13页
A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity... A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit. 展开更多
关键词 W/Z boson rare decay upper limit of branching fraction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部