A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctua...A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably.展开更多
基金funded by Natural Science Foundation of China(Grants Nos.51279144 and 11432015)
文摘A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably.