In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters toget...In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.展开更多
The procedures of sample preparation for isotopic determination of boron in clay sediments is very cumbersome, by far, there haven't been relevant reports on that. In order to establish an effective method for sam...The procedures of sample preparation for isotopic determination of boron in clay sediments is very cumbersome, by far, there haven't been relevant reports on that. In order to establish an effective method for sample preparation, a series of experiments were carried out. In this paper, boron in clay sediments was extracted with HCl solution and purified by two-step ion exchange method. Extracted HCl solution should be adjusted to alkalescency before passing through the Amberlite IRA 743 resin column due to the fact that Amberlite IRA 743 resin absorbs boron only from alkalescent solution. However, a mass of hydroxides of Al and Fe will be precipitated when the extracted HCl solution becomes alkalescent. Hydroxides of Al and Fe have a strong adsorption capacity for boron, which can cause boron isotope fractionation. To treat precipitated hydroxides of Al and Fe, four procedures, namely direct ion exchange (DRIE), decationizing ion exchange (DCIE), once sedimentation ion exchange (OSIE) and repeated sedimentation ion exchange (RSIE) were used and assessed. The influences of the four procedures on separation and extraction and isotopic composition of boron in experimental solutions and clay sediments were also discussed. According to the results, the DRIE, DCIE and OSIE are improper. The result of sample determination indicates that when extracting boron via RSIE, with the increase of precipitation times, there's an obvious decrease in boron content in the precipitated hydroxides while a sharp increase in recovery of boron and it is favorable for weakening the influence of boron isotope fractionation. But the process of RSIE is time consuming and it may introduce boron. It needs further research to establish a more effective sample preparation method for isotopic deter- mination of boron in clay sediments.展开更多
Since 2006,we have conducted a geological exploration of the Khammuane area in southeastern Laos.Several thick sequences of potash deposits containing sylvite and carnallite were discovered from drilling Paleocene str...Since 2006,we have conducted a geological exploration of the Khammuane area in southeastern Laos.Several thick sequences of potash deposits containing sylvite and carnallite were discovered from drilling Paleocene strata of the Thangon Formation(E1tg).To constrain the origin of the brine that formed thick sequences of salt mineral deposits,we measured the strontium and boron isotope composition of some salt minerals in the potash deposit.Boron isotope composition of halite-and potash-associated minerals in the Khammuane potash deposit varied from 19.91%to 31.01‰,which differs significantly from continental evaporates(-6.83‰--5.79‰)but is very close to that of salts precipitated from evapo-concentrated seawater(10‰-36‰).The 87Sr/86Sr ratios(0.707542 to 0.709461)of salts were also close to the values of Paleocene seawater(0.70772 to 0.707830).The content of Br-(0.01%-0.25%)and Br×103/Cl ratios(0.10-0.52)of halite were>10 times higher than that of common continental salts.These characteristics indicate clearly that the Laos potash deposits were deposited from seawater.The small variation in boron and strontium isotopes in all salt sedimentary sequences(gypsum-halite-potash-halite)also suggests that the recharge source should be stable and the effects of other continental water mixing are negligible.Large-scale potash deposits are commonly precipitated from seawater.Hence,the results of recent regional drilling work and geochemical research suggest extensive potash resources could occur in the Thangon Formation of southeastern Laos.展开更多
There are two main methods to determine boron isotopic composition.One is the solution method,in which boron is purified after the samples are dissolved in solution and the boron isotope ratios are determined by therm...There are two main methods to determine boron isotopic composition.One is the solution method,in which boron is purified after the samples are dissolved in solution and the boron isotope ratios are determined by thermal ionization mass spectrometry(P-TIMS and N-TIMS) or multicollector inductively coupled plasma mass spectrometry(MC-ICP-MS).The other is an in-situ analysis method,in which the in-situ boron isotopic ratios in minerals are analyzed directly using secondary ion mass spectrometry(SIMS) or laser ablation multicollector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS).In the in-situ analysis method for boron isotopes,the multifarious chemical purification and separation processes of the solution method are avoided,with increased work efficiency.In addition,the microzones and microbeddings of minerals can be analyzed in-situ to reveal the fine processes and conditions of mineral formation.In this study,using the standard-sample-bracketing(SSB) method,mass bias of the instrument and the fractionation of isotopes were calibrated,and the in-situ determination method of LA-MC-ICP-MS for boron isotopes was established.Through detailed analyses on a series of boron isotope standards and samples,a matrix effect was assessed but not detected,and the analysis results were in accordance with the formerly reported values or P-TIMS determined values,within the error range.The analytical results for IAEA B4 and IMR RB1 with relatively high boron contents were δ 11B =-(8.36±0.58)‰(2σ,n=50) and δ 11B =-(12.96±0.97)‰(2σ,n=57),respectively;the analytical result for IAEA B6 with rela-tively low boron content was δ 11B =-(3.29±1.12)‰(2σ,n=35).In-situ measurements for B isotopes were performed on geo-logical samples such as tourmaline,ulexite,ludwigite,inyoite and ascharite,with the results consistent with those determined by P-TIMS,within the error range.展开更多
Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whi...Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whisker habits were related to the different environments in which anion coordination polyhedra grew. The growth units of basic magnesium chloride whiskers are [Mg - (OH) 4]2 -and [Mg - Cl 4]2 -. The growth process is the incorporation process of growth units. Growth units will have different incorporations and orientations caused by different system characters or heating. Furthermore, the formation mechanism of basic magnesium chloride whiskers was also interpreted using anion coordination polyhedron growth units.展开更多
From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhed...From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhedron growth units. The Raman shift of growth solutions of HT, Cu-HTlc, and Cu-Zn-HTlc are monitored using Raman spectroscopy. In the experiment, the growth units of Mg-Al-hydrotalcite are [Mg-(OH)6]4- and [Al-(OH)6]3-, and the growth units of Cu-Htlc and Cu-Zn-HTlc are [Mg-(OH)6]4- and [Al-(OH)6]3-, respectively. The growth process of hydrotalcite is as follows: growth units first incorpo- rate into metal layers, then metal layers adsorb An- and H2O, and the growth units incorporate into layer compounds according to this rule. Growth units will have different incorporations and growth morphologies caused by different growth surroundings. Furthermore, the reason why Cu-HTlc is difficult to synthesize is also interpreted in this paper.展开更多
Brine from the saline Qarhan Lake was evaporated at 28±2°C in a clean environment.Two groups of experiments were conducted;one with complete separation of precipitate and brine at different stages of evapora...Brine from the saline Qarhan Lake was evaporated at 28±2°C in a clean environment.Two groups of experiments were conducted;one with complete separation of precipitate and brine at different stages of evaporation,and the other with continuous precipitation during the evaporation.Seventy-nine precipitate and brine samples were collected during the experiments,and the δ37 Cl values were determined using an improved thermal ionization mass spectrometry procedure for precise measurement of chlorine isotopes based on Cs2Cl+ ions.Based on the concentrations of Na+,K+,and Mg2+,evaporation was divided into three main precipitation stages as follows:halite dominant,carnallite dominant,and bischofite dominant.The δ37 Clsolid and δ37 Clliquid values of the precipitate and coexisting brine samples at different stages showed the following characteristics.The precipitates were enriched with 37 Cl relative to the coexisting brine samples,and the δ37 Cl of both the precipitate and brine samples decreased gradually during evaporation.The fractionation factors(αh) between halite and brine were the highest,followed by that(αc) between carnallite and brine,and then that(αb) between bischofite and brine.The αc and αb values of less than one,which indicate the precipitate is enriched in 35 Cl,were found when the evaporation process entered a new stage.However,the δ37 Cl values of carnallite,bischofite,and the coexisting brine samples decreased during evaporation.The residual brine is a 35 Cl reservoir.The experimental phenomena were consistent with the δ37 Cl values in saline deposits in the literature.δ37 Cl can be used as an indicator of brine evaporation processes,which is important in the exploration of sylvinite deposits.展开更多
Experiments of boron incorporated into Mg(OH)2 from magnesium-free synthetic seawater were carried out at various pH values, in order to investigate the adsorption species and the variation of isotopic fractionation o...Experiments of boron incorporated into Mg(OH)2 from magnesium-free synthetic seawater were carried out at various pH values, in order to investigate the adsorption species and the variation of isotopic fractionation of boron on Mg(OH)2. The results showed that the incorporation of boron into Mg(OH)2 was very rapid and reached the equilibrium after 4 h. The [B]s and the partition coefficient Kd between Mg(OH)2 and final solution decreased with the increasing pH. The maximum values of [B]s and Kd were much higher than that of boron adsorbed on metal oxide or clay minerals, indicating that the incorporation capability of boron into Mg(OH)2 was very strong. When the adsorption reached the equilibrium, the δ 11Bfsw was lower than δ 11Bisw. The boron isotopic fractionation αs-fsw was between 1.0186 and 1.0220 with an average of 1.0203. All these indicated that 11B incorporated into Mg(OH)2 preferentially due to B(OH)3 incorporation into Mg(OH)2 preferentially. The deposition reaction of B(OH)3 with Mg(OH)2 was the direct reason for B(OH)3 incorporation into Mg(OH)2. During the boron incorporation into Mg(OH)2, the isotopic fractionation characteristic of boron was decided by the simultaneous existence of adsorption of boron on Mg(OH)2 and the deposition reaction of H3BO3 with Mg(OH)2. Different from the fact that only B(OH)4-species incorporated into bio-carbonate, B(OH)3 and B(OH)4 incorporated into Mg(OH)2 simultaneously, and B(OH)3 incorporated into it preferentially. The lower pH is, the more incorporated fraction of B(OH)3 will be. Mg(OH)2 exists widely in madrepore, which influences the quantitative correspondence of the boron isotopic composition δ 11Bcarb of corals on the pH of the seawater badly, and brings serious uncertainty to the δ 11Bcarb as the indicator of the ancient seawater pH.展开更多
The concentrations and isotopic compositions of boron and strontium of Quaternary foraminifers and bivalve fossils collected in the Yanghuzhuang section of Yanqing, Beijing and of modern gastropods living in the Guish...The concentrations and isotopic compositions of boron and strontium of Quaternary foraminifers and bivalve fossils collected in the Yanghuzhuang section of Yanqing, Beijing and of modern gastropods living in the Guishui River and of river water were measured. The concentrations and isotopic compo- sitions of Quaternary foraminifers and bivalve fossils differed from those of modern marine fo- raminifers and were similar to those of modern terrestrial gastropods from the Guishui River. These results indicate that early Quaternary foraminifers in the Yanghuzhuang section inhabited a nonmarine environment and that these foraminifers were not the result of a transgression or sea flooding. The foraminifers were not special halobios and can survive in the terrestrial condition that resembled those of the ocean.展开更多
To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper d...To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper describes a coral culture experiment that was conducted at several seawater temperatures T (21-28℃) using a tandem aquarium system and the new method for depositing coral skeletons grown under controlled conditions. The δ180c values and the St/Ca and Mg/Ca ratios of the cultured coral were measured. We concluded that the δ18Oc values and Sr/Ca and Mg/Ca ratios of the cultured coral are clearly corre- lated with T. The linear regression curve is δ18Oc(‰)=-0.1427×T(℃)-0.1495 (n=18, r=0.955, p〈0.0001), and the slope of -0.1427‰/°d℃ is at the low end of the range of published values (-0.13-0.29‰/°d℃). The Sr/Ca ratio decreases with increas- ing T, whereas the Mg/Ca ratio increases with increasing T, indicating a negative correlation between Sr/Ca and Mg/Ca. Their linear regression curves are Sr/Ca(mmol/mol)=-O.O4156×T+lO.59 (n=15, r=-0.789, p〈0.005) and Mg/Ca (mmol/mol)= 0.04974×T+2.339 (n=17, r=-0.457, p〈0.05), respectively, which demonstrate that when Mg/Ca and Sr/Ca are increased by one unit, T increases by 5.19℃and decreases by 15.62℃, respectively. These variations are significantly lower than published values.展开更多
Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral sampl...Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral samples were screened for diagenetic recrystallization by cathodoluminescence microscopy, trace element geochemistry of B, Fe, Mn, Sr, and scanning electron microscopy. The boron isotope ratios for brachiopods in Silurian, Devonian, Carboniferous, and Triassic calcites are in the ranges 8.9‰-14.0‰, 8.8‰-13.8‰, 10.3‰-16.3‰, and 6.7‰-12.4‰, respectively. The boron isotope ratios of coral calcites in the Silurian, Devonian, and Permian are 9.1‰-12.2‰, 6.1‰-13.8‰, and 9.2‰-16.1‰, respectively. The δ11B values for both brachiopods and corals are significantly lower than those for modern biogenic carbonates, indicating that the Paleozoic oceans were depleted of δ11B by up to 10‰. Our results are consistent with previous published studies. The boron isotope compositions of corals and brachiopods show the consistent trends. The low δ11B values may be explained by an enhanced riverine flux of boron from the continents.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40573034 and 40173023)China National Major Basic Development Program"973"(2003CB214605).
文摘In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.
基金financially supported by the National Natural Science Foundation of China (Nos. 40976074 and 41173019)project for doctors in the western supported by CAS
文摘The procedures of sample preparation for isotopic determination of boron in clay sediments is very cumbersome, by far, there haven't been relevant reports on that. In order to establish an effective method for sample preparation, a series of experiments were carried out. In this paper, boron in clay sediments was extracted with HCl solution and purified by two-step ion exchange method. Extracted HCl solution should be adjusted to alkalescency before passing through the Amberlite IRA 743 resin column due to the fact that Amberlite IRA 743 resin absorbs boron only from alkalescent solution. However, a mass of hydroxides of Al and Fe will be precipitated when the extracted HCl solution becomes alkalescent. Hydroxides of Al and Fe have a strong adsorption capacity for boron, which can cause boron isotope fractionation. To treat precipitated hydroxides of Al and Fe, four procedures, namely direct ion exchange (DRIE), decationizing ion exchange (DCIE), once sedimentation ion exchange (OSIE) and repeated sedimentation ion exchange (RSIE) were used and assessed. The influences of the four procedures on separation and extraction and isotopic composition of boron in experimental solutions and clay sediments were also discussed. According to the results, the DRIE, DCIE and OSIE are improper. The result of sample determination indicates that when extracting boron via RSIE, with the increase of precipitation times, there's an obvious decrease in boron content in the precipitated hydroxides while a sharp increase in recovery of boron and it is favorable for weakening the influence of boron isotope fractionation. But the process of RSIE is time consuming and it may introduce boron. It needs further research to establish a more effective sample preparation method for isotopic deter- mination of boron in clay sediments.
基金supported by the National Natural Science Foundation of China(40603007 and 40903024)
文摘Since 2006,we have conducted a geological exploration of the Khammuane area in southeastern Laos.Several thick sequences of potash deposits containing sylvite and carnallite were discovered from drilling Paleocene strata of the Thangon Formation(E1tg).To constrain the origin of the brine that formed thick sequences of salt mineral deposits,we measured the strontium and boron isotope composition of some salt minerals in the potash deposit.Boron isotope composition of halite-and potash-associated minerals in the Khammuane potash deposit varied from 19.91%to 31.01‰,which differs significantly from continental evaporates(-6.83‰--5.79‰)but is very close to that of salts precipitated from evapo-concentrated seawater(10‰-36‰).The 87Sr/86Sr ratios(0.707542 to 0.709461)of salts were also close to the values of Paleocene seawater(0.70772 to 0.707830).The content of Br-(0.01%-0.25%)and Br×103/Cl ratios(0.10-0.52)of halite were>10 times higher than that of common continental salts.These characteristics indicate clearly that the Laos potash deposits were deposited from seawater.The small variation in boron and strontium isotopes in all salt sedimentary sequences(gypsum-halite-potash-halite)also suggests that the recharge source should be stable and the effects of other continental water mixing are negligible.Large-scale potash deposits are commonly precipitated from seawater.Hence,the results of recent regional drilling work and geochemical research suggest extensive potash resources could occur in the Thangon Formation of southeastern Laos.
基金supported by the National Special Research Program for Non-Profit Trades (Sponsored by MLR, 200911043-20 and 200811114)
文摘There are two main methods to determine boron isotopic composition.One is the solution method,in which boron is purified after the samples are dissolved in solution and the boron isotope ratios are determined by thermal ionization mass spectrometry(P-TIMS and N-TIMS) or multicollector inductively coupled plasma mass spectrometry(MC-ICP-MS).The other is an in-situ analysis method,in which the in-situ boron isotopic ratios in minerals are analyzed directly using secondary ion mass spectrometry(SIMS) or laser ablation multicollector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS).In the in-situ analysis method for boron isotopes,the multifarious chemical purification and separation processes of the solution method are avoided,with increased work efficiency.In addition,the microzones and microbeddings of minerals can be analyzed in-situ to reveal the fine processes and conditions of mineral formation.In this study,using the standard-sample-bracketing(SSB) method,mass bias of the instrument and the fractionation of isotopes were calibrated,and the in-situ determination method of LA-MC-ICP-MS for boron isotopes was established.Through detailed analyses on a series of boron isotope standards and samples,a matrix effect was assessed but not detected,and the analysis results were in accordance with the formerly reported values or P-TIMS determined values,within the error range.The analytical results for IAEA B4 and IMR RB1 with relatively high boron contents were δ 11B =-(8.36±0.58)‰(2σ,n=50) and δ 11B =-(12.96±0.97)‰(2σ,n=57),respectively;the analytical result for IAEA B6 with rela-tively low boron content was δ 11B =-(3.29±1.12)‰(2σ,n=35).In-situ measurements for B isotopes were performed on geo-logical samples such as tourmaline,ulexite,ludwigite,inyoite and ascharite,with the results consistent with those determined by P-TIMS,within the error range.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40776071, 40976074)
文摘Based on the theoretical model of anion coordination polyhedron growth units, the growth mechanism of the basic magnesium chloride whisker was discussed in this paper.It was found that the basic magnesium chloride whisker habits were related to the different environments in which anion coordination polyhedra grew. The growth units of basic magnesium chloride whiskers are [Mg - (OH) 4]2 -and [Mg - Cl 4]2 -. The growth process is the incorporation process of growth units. Growth units will have different incorporations and orientations caused by different system characters or heating. Furthermore, the formation mechanism of basic magnesium chloride whiskers was also interpreted using anion coordination polyhedron growth units.
基金supported by the National Natural Science Foundation of China (Grant Nos.40776071,40976074)
文摘From the point of growth units, the growth mechanism of hydrotalcite (HT) crystal is investigated in this paper. Results show that the growth morphology of HT is consistent with the model of anion coordination polyhedron growth units. The Raman shift of growth solutions of HT, Cu-HTlc, and Cu-Zn-HTlc are monitored using Raman spectroscopy. In the experiment, the growth units of Mg-Al-hydrotalcite are [Mg-(OH)6]4- and [Al-(OH)6]3-, and the growth units of Cu-Htlc and Cu-Zn-HTlc are [Mg-(OH)6]4- and [Al-(OH)6]3-, respectively. The growth process of hydrotalcite is as follows: growth units first incorpo- rate into metal layers, then metal layers adsorb An- and H2O, and the growth units incorporate into layer compounds according to this rule. Growth units will have different incorporations and growth morphologies caused by different growth surroundings. Furthermore, the reason why Cu-HTlc is difficult to synthesize is also interpreted in this paper.
基金supported by the National Basic Research Program of China (2011CB403000)the National Natural Science Foundation of China (40776071,40976074 and 41173019)
文摘Brine from the saline Qarhan Lake was evaporated at 28±2°C in a clean environment.Two groups of experiments were conducted;one with complete separation of precipitate and brine at different stages of evaporation,and the other with continuous precipitation during the evaporation.Seventy-nine precipitate and brine samples were collected during the experiments,and the δ37 Cl values were determined using an improved thermal ionization mass spectrometry procedure for precise measurement of chlorine isotopes based on Cs2Cl+ ions.Based on the concentrations of Na+,K+,and Mg2+,evaporation was divided into three main precipitation stages as follows:halite dominant,carnallite dominant,and bischofite dominant.The δ37 Clsolid and δ37 Clliquid values of the precipitate and coexisting brine samples at different stages showed the following characteristics.The precipitates were enriched with 37 Cl relative to the coexisting brine samples,and the δ37 Cl of both the precipitate and brine samples decreased gradually during evaporation.The fractionation factors(αh) between halite and brine were the highest,followed by that(αc) between carnallite and brine,and then that(αb) between bischofite and brine.The αc and αb values of less than one,which indicate the precipitate is enriched in 35 Cl,were found when the evaporation process entered a new stage.However,the δ37 Cl values of carnallite,bischofite,and the coexisting brine samples decreased during evaporation.The residual brine is a 35 Cl reservoir.The experimental phenomena were consistent with the δ37 Cl values in saline deposits in the literature.δ37 Cl can be used as an indicator of brine evaporation processes,which is important in the exploration of sylvinite deposits.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40573013 and 40776071) International Partnership Project of Chinese Academy of Sciences
文摘Experiments of boron incorporated into Mg(OH)2 from magnesium-free synthetic seawater were carried out at various pH values, in order to investigate the adsorption species and the variation of isotopic fractionation of boron on Mg(OH)2. The results showed that the incorporation of boron into Mg(OH)2 was very rapid and reached the equilibrium after 4 h. The [B]s and the partition coefficient Kd between Mg(OH)2 and final solution decreased with the increasing pH. The maximum values of [B]s and Kd were much higher than that of boron adsorbed on metal oxide or clay minerals, indicating that the incorporation capability of boron into Mg(OH)2 was very strong. When the adsorption reached the equilibrium, the δ 11Bfsw was lower than δ 11Bisw. The boron isotopic fractionation αs-fsw was between 1.0186 and 1.0220 with an average of 1.0203. All these indicated that 11B incorporated into Mg(OH)2 preferentially due to B(OH)3 incorporation into Mg(OH)2 preferentially. The deposition reaction of B(OH)3 with Mg(OH)2 was the direct reason for B(OH)3 incorporation into Mg(OH)2. During the boron incorporation into Mg(OH)2, the isotopic fractionation characteristic of boron was decided by the simultaneous existence of adsorption of boron on Mg(OH)2 and the deposition reaction of H3BO3 with Mg(OH)2. Different from the fact that only B(OH)4-species incorporated into bio-carbonate, B(OH)3 and B(OH)4 incorporated into Mg(OH)2 simultaneously, and B(OH)3 incorporated into it preferentially. The lower pH is, the more incorporated fraction of B(OH)3 will be. Mg(OH)2 exists widely in madrepore, which influences the quantitative correspondence of the boron isotopic composition δ 11Bcarb of corals on the pH of the seawater badly, and brings serious uncertainty to the δ 11Bcarb as the indicator of the ancient seawater pH.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40373006 and 40573013)
文摘The concentrations and isotopic compositions of boron and strontium of Quaternary foraminifers and bivalve fossils collected in the Yanghuzhuang section of Yanqing, Beijing and of modern gastropods living in the Guishui River and of river water were measured. The concentrations and isotopic compo- sitions of Quaternary foraminifers and bivalve fossils differed from those of modern marine fo- raminifers and were similar to those of modern terrestrial gastropods from the Guishui River. These results indicate that early Quaternary foraminifers in the Yanghuzhuang section inhabited a nonmarine environment and that these foraminifers were not the result of a transgression or sea flooding. The foraminifers were not special halobios and can survive in the terrestrial condition that resembled those of the ocean.
基金supported by National Natural Science Foundation of China (Grant Nos. 40976074 and 41173019)State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (Grant. No SKLLQG1126)
文摘To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper describes a coral culture experiment that was conducted at several seawater temperatures T (21-28℃) using a tandem aquarium system and the new method for depositing coral skeletons grown under controlled conditions. The δ180c values and the St/Ca and Mg/Ca ratios of the cultured coral were measured. We concluded that the δ18Oc values and Sr/Ca and Mg/Ca ratios of the cultured coral are clearly corre- lated with T. The linear regression curve is δ18Oc(‰)=-0.1427×T(℃)-0.1495 (n=18, r=0.955, p〈0.0001), and the slope of -0.1427‰/°d℃ is at the low end of the range of published values (-0.13-0.29‰/°d℃). The Sr/Ca ratio decreases with increas- ing T, whereas the Mg/Ca ratio increases with increasing T, indicating a negative correlation between Sr/Ca and Mg/Ca. Their linear regression curves are Sr/Ca(mmol/mol)=-O.O4156×T+lO.59 (n=15, r=-0.789, p〈0.005) and Mg/Ca (mmol/mol)= 0.04974×T+2.339 (n=17, r=-0.457, p〈0.05), respectively, which demonstrate that when Mg/Ca and Sr/Ca are increased by one unit, T increases by 5.19℃and decreases by 15.62℃, respectively. These variations are significantly lower than published values.
基金supported by National Natural Science Foundation of China (Grant Nos. 407760071 and 40976074)
文摘Boron isotope values in Paleozoic brachiopods and corals, collected from the Yunnan-Guizhou Plateau, China, can be used to constrain the boron isotope compositions of past oceans. All brachiopod shells and coral samples were screened for diagenetic recrystallization by cathodoluminescence microscopy, trace element geochemistry of B, Fe, Mn, Sr, and scanning electron microscopy. The boron isotope ratios for brachiopods in Silurian, Devonian, Carboniferous, and Triassic calcites are in the ranges 8.9‰-14.0‰, 8.8‰-13.8‰, 10.3‰-16.3‰, and 6.7‰-12.4‰, respectively. The boron isotope ratios of coral calcites in the Silurian, Devonian, and Permian are 9.1‰-12.2‰, 6.1‰-13.8‰, and 9.2‰-16.1‰, respectively. The δ11B values for both brachiopods and corals are significantly lower than those for modern biogenic carbonates, indicating that the Paleozoic oceans were depleted of δ11B by up to 10‰. Our results are consistent with previous published studies. The boron isotope compositions of corals and brachiopods show the consistent trends. The low δ11B values may be explained by an enhanced riverine flux of boron from the continents.